Department of Chemistry and Computational Science Program, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
Department of Computer Science, University of British Columbia, 2366 Main Mall, Vancouver, British Columbia V6T1Z4, Canada.
Acta Crystallogr A Found Adv. 2023 May 1;79(Pt 3):229-245. doi: 10.1107/S205327332300116X. Epub 2023 Mar 31.
The previously described approach for determination of the relativistic atomic X-ray scattering factors (XRSFs) at the Dirac-Hartree-Fock level [Olukayode et al. (2023). Acta Cryst. A79, 59-79] has been used to evaluate the XRSFs for a total of 318 species including all chemically relevant cations [Greenwood & Earnshaw (1997). Chemistry of the Elements], six monovalent anions (O, F, Cl, Br, I, At), the nsnp excited (valence) states of carbon and silicon, and several exotic cations (Db, Sg, Bh, Hs and Cn) for which the chemical compounds have been recently identified, thus significantly extending the coverage relative to all the earlier studies. Unlike the data currently recommended by the International Union of Crystallography (IUCr) [Maslen et al. (2006). International Tables for Crystallography, Vol. C, Section 6.1.1, pp. 554-589], which originate from different levels of theory including the non-relativistic Hartree-Fock and correlated methods, as well as the relativistic Dirac-Slater calculations, the re-determined XRSFs come from a uniform treatment of all species within the same relativistic B-spline Dirac-Hartree-Fock approach [Zatsarinny & Froese Fischer (2016). Comput. Phys. Comm. 202, 287-303] that includes the Breit interaction correction and the Fermi nuclear charge density model. While it was not possible to compare the quality of the generated wavefunctions with that from the previous studies due to a lack (to the best of our knowledge) of such data in the literature, a careful comparison of the total electronic energies and the estimated atomic ionization energies with experimental and theoretical values from other studies instils confidence in the quality of the calculations. A combination of the B-spline approach and a fine radial grid allowed for a precise determination of the XRSFs for each species in the entire 0 ≤ sin θ/λ ≤ 6 Å range, thus avoiding the necessity for extrapolation in the 2 ≤ sin θ/λ ≤ 6 Å interval which, as was shown in the first study, may lead to inconsistencies. In contrast to the Rez et al. work [Acta Cryst. (1994), A50, 481-497], no additional approximations were introduced when calculating wavefunctions for the anions. The conventional and extended expansions were employed to produce interpolating functions for each species in both the 0 ≤ sin θ/λ ≤ 2 Å and 2 ≤ sin θ/λ ≤ 6 Å intervals, with the extended expansions offering a significantly better accuracy at a minimal computational overhead. The combined results of this and the previous study may be used to update the XRSFs for neutral atoms and ions listed in Vol. C of the 2006 edition of International Tables for Crystallography.
前文所述的在狄拉克-哈特ree-福克(Dirac-Hartree-Fock)水平上确定相对论原子 X 射线散射因子(XRSFs)的方法[Olukayode 等人(2023 年)。晶体学报 A79, 59-79]已被用于评估总共 318 种物质的 XRSFs,包括所有化学相关的阳离子[格林伍德和恩肖(1997 年)。元素化学]、六种单价阴离子(O、F、Cl、Br、I、At)、碳和硅的 nsnp 激发(价)态,以及一些最近被鉴定出化合物的奇特阳离子(Db、Sg、Bh、Hs 和 Cn),这使得涵盖范围相对于所有早期研究都有显著扩展。与目前国际晶体学联合会(IUCr)推荐的数据不同[Maslen 等人(2006 年)。晶体学国际表,第 C 卷,第 6.1.1 节,第 554-589 页],后者源于不同的理论水平,包括非相对论哈特ree-福克和相关方法,以及相对论的狄拉克-斯莱特计算,重新确定的 XRSFs 来自于相同相对论 B 样条狄拉克-哈特ree-福克方法(Zatsarinny 和 Froese Fischer(2016 年)。计算物理通信 202,287-303)的统一处理,其中包括 Breit 相互作用修正和费米核电荷密度模型。尽管由于缺乏文献中此类数据(据我们所知),无法将生成的波函数质量与之前的研究进行比较,但与其他研究的实验和理论值的仔细比较表明,原子总电子能量和估计的原子电离能的计算质量令人放心。B 样条方法和精细径向网格的组合允许在整个 0≤sinθ/λ≤6 Å 范围内精确确定每个物质的 XRSFs,从而避免在 2≤sinθ/λ≤6 Å 区间进行外推,正如第一项研究所示,这可能导致不一致。与 Rez 等人的工作[晶体学(1994 年),A50,481-497]不同,在计算阴离子的波函数时没有引入额外的近似。对于每个物质,在 0≤sinθ/λ≤2 Å 和 2≤sinθ/λ≤6 Å 两个区间都采用了常规和扩展的展开式来生成插值函数,扩展展开式以最小的计算开销提供了显著更高的精度。这项工作和之前研究的综合结果可用于更新 2006 年版国际晶体学表 C 卷中列出的中性原子和离子的 XRSFs。