Suppr超能文献

基于计算机辅助无监督聚类的胃癌肿瘤-淋巴结-转移分期系统的改进。

Improvements to the gastric cancer tumor-node-metastasis staging system based on computer-aided unsupervised clustering.

机构信息

Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang, 110169, China.

Department of General, Visceral and Transplantation Surgery, Section Surgical Research, University Clinic Heidelberg, Im Neuenheimer Feld 365, 69120, Heidelberg, Germany.

出版信息

BMC Cancer. 2018 Jul 3;18(1):706. doi: 10.1186/s12885-018-4623-z.

Abstract

BACKGROUND

The Union for International Cancer Control (UICC) tumor-node-metastasis (TNM) classification is a key gastric cancer prognosis system. This study aimed to create a new TNM system to provide a reference for the clinical diagnosis and treatment of gastric cancer.

METHODS

A review of gastric cancer patients' records was conducted in The First Hospital of China Medical University and the Liaoning Cancer Hospital and Institute. Based on patients' prognoses data, computer-aided unsupervised clustering was performed for all possible TNM staging situations to create a new staging division system.

RESULTS

The primary outcome measure was 5-year survival, analyzed according to TNM classifications. Computer-aided unsupervised clustering for all TNM staging situations was used to create TNM division criteria that were more consistent with clinical situations. Furthermore, unsupervised clustering for the number of lymph node metastasis in the N stage led to the formulation of a classification method that differs from the existing N stage criteria, and unsupervised clustering for tumor size provided an additional reference for prognosis estimates.

CONCLUSIONS

Finally, we developed a TNM staging system based on the computer-aided unsupervised clustering method; this system was more in line with clinical prognosis data when compared with the 7th edition of UICC gastric cancer TNM classification.

摘要

背景

国际抗癌联盟(UICC)的肿瘤-淋巴结-转移(TNM)分类是一种关键的胃癌预后系统。本研究旨在创建一个新的 TNM 系统,为胃癌的临床诊断和治疗提供参考。

方法

对中国医科大学第一附属医院和辽宁省肿瘤医院和研究所的胃癌患者病历进行了回顾。根据患者的预后数据,对所有可能的 TNM 分期情况进行了计算机辅助无监督聚类,以创建一个新的分期划分系统。

结果

主要的结局指标是 5 年生存率,根据 TNM 分类进行分析。对所有 TNM 分期情况进行计算机辅助无监督聚类,以制定更符合临床情况的 TNM 划分标准。此外,对 N 分期淋巴结转移数量的无监督聚类导致了一种与现有 N 分期标准不同的分类方法,对肿瘤大小的无监督聚类为预后估计提供了额外的参考。

结论

最后,我们开发了一种基于计算机辅助无监督聚类方法的 TNM 分期系统;与 UICC 第 7 版胃癌 TNM 分类相比,该系统与临床预后数据更吻合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f160/6029135/a63d82219af7/12885_2018_4623_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验