Suppr超能文献

镁钼酸盐分级结构用于高性能钠离子器件的电化学新见解。

New insights into the electrochemistry of magnesium molybdate hierarchical architectures for high performance sodium devices.

机构信息

School of Engineering and Information Technology, Murdoch University, WA 6150, Australia.

出版信息

Nanoscale. 2018 Jul 13;10(27):13277-13288. doi: 10.1039/c8nr03824d.

Abstract

Magnesium molybdate (MgMoO4), which possesses synergistic features combining both hierarchical plate-like nanomaterials and porous architectures, has been successfully synthesized through a facile combustion synthesis at a low temperature. The hierarchical architecture is characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), scanning transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analyses. The as-obtained MgMoO4 nanoplates showed a porous structure with a pore-size distribution ranging from 50 to 70 nm. This porosity provides an electron transport pathway and enhanced surface reaction kinetics. The binding energies measured for Mg 2p, Mo 3d, 3p and O 1s are consistent with the literature, and with the metal ions being present as M(ii) and M(vi) states, respectively. This indicates that the oxidation states of the metal cations are as expected. The electrochemical behaviour of MgMoO4 was investigated using aqueous (NaOH) and non-aqueous solvents (NaClO4 in EC : DMC : FEC) for supercapacitor and battery applications. The sodium-ion capacitor involves ion absorption and insertion into the MgMoO4 electrodes resulting in superior power and energy densities. However, the cycling stability was found to be stable only for an aqueous system. The formation of a solid electrolyte surface layer restricted the reversible capacity of the MgMoO4 in the sodium-battery. Nevertheless, it does offer some promise as an anode material for storing energy with high rate performance and excellent capacity retention. Detailed comparative analyses of various electrolytes in storage devices such as hybrid sodium-ion capacitors and sodium-ion batteries are vital for the integration of hierarchical structured materials into practical applications. The reaction mechanisms are postulated.

摘要

钼酸镁(MgMoO4)具有层状纳米材料和多孔结构的协同特性,通过低温燃烧合成成功合成。通过 X 射线衍射(XRD)、场发射扫描电子显微镜(FESEM)、扫描透射电子显微镜(TEM)和 X 射线光电子能谱(XPS)分析对分层结构进行了表征。所获得的 MgMoO4 纳米板具有多孔结构,孔径分布范围为 50-70nm。这种多孔性提供了电子传输途径并增强了表面反应动力学。Mg 2p、Mo 3d、3p 和 O 1s 的结合能与文献一致,并且金属离子分别以 M(ii)和 M(vi)状态存在。这表明金属阳离子的氧化态符合预期。使用水性(NaOH)和非水性溶剂(EC:DMC:FEC 中的 NaClO4)研究了 MgMoO4 的电化学行为,用于超级电容器和电池应用。钠离子电容器涉及离子吸收和插入 MgMoO4 电极,从而产生更高的功率和能量密度。然而,发现仅在水性系统中循环稳定性稳定。固体电解质表面层的形成限制了 MgMoO4 在钠离子电池中的可逆容量。然而,作为具有高倍率性能和优异容量保持率的储能用阳极材料,它具有一定的前景。在混合钠离子电容器和钠离子电池等存储设备中对各种电解质进行详细的比较分析对于将分层结构材料集成到实际应用中至关重要。提出了反应机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验