Suppr超能文献

加权和密集结构连接组中富俱乐部组织的稳健识别。

Robust Identification of Rich-Club Organization in Weighted and Dense Structural Connectomes.

作者信息

Liang Xiaoyun, Yeh Chun-Hung, Connelly Alan, Calamante Fernando

机构信息

The Florey Institute of Neuroscience and Mental Health, Heidelberg, VIC, Australia.

The Florey Department of Neuroscience and Mental Health Medicine, University of Melbourne, Melbourne, VIC, Australia.

出版信息

Brain Topogr. 2019 Jan;32(1):1-16. doi: 10.1007/s10548-018-0661-8. Epub 2018 Jul 3.

Abstract

The human brain is a complex network, in which some brain regions, denoted as 'hub' regions, play critically important roles. Some of these hubs are highly interconnected forming a rich-club organization, which has been identified based on the degree metric from structural connectomes constructed using diffusion tensor imaging (DTI)-based fiber tractography. However, given the limitations of DTI, the yielded structural connectomes are largely compromised, possibly affecting the characterization of rich-club organizations. Recent progress in diffusion MRI and fiber tractography now enable more reliable but also very dense structural connectomes to be achieved. However, while the existing rich-club analysis method is based on weighted networks, it is essentially built upon degree metric and, therefore, not suitable for identifying rich-club organizations from such dense networks, as it yields nodes with indistinguishably high degrees. Therefore, we propose a novel method, i.e. Rich-club organization Identification using Combined H-degree and Effective strength to h-degree Ratio (RICHER), to identify rich-club organizations from dense weighted networks. Overall, it is shown that more robust rich-club organizations can be achieved using our proposed framework (i.e., state-of-the-art fiber tractography approaches and our proposed RICHER method) in comparison to the previous method focusing on weighted networks based on degree, i.e., RC-degree. Furthermore, by simulating network attacks in 3 ways, i.e., attack to non-rich-club/non-rich-club edges (NRC2NRC), rich-club/non-rich-club edges (RC2NRC), and rich-club/rich-club edges (RC2RC), brain network damage consequences have been evaluated in terms of global efficiency (GE) reductions. As expected, significant GE reductions have been detected using our proposed framework among conditions, i.e., NRC2NRC < RC2NRC, NRC2NRC < RC2RC and RC2NRC < RC2RC, which however have not been detected otherwise.

摘要

人类大脑是一个复杂的网络,其中一些被称为“枢纽”区域的脑区发挥着至关重要的作用。这些枢纽中的一些高度相互连接,形成了一个富俱乐部组织,这是基于使用基于扩散张量成像(DTI)的纤维束成像构建的结构连接组的度度量来识别的。然而,鉴于DTI的局限性,所产生的结构连接组在很大程度上受到损害,可能会影响富俱乐部组织的特征描述。扩散磁共振成像和纤维束成像的最新进展现在能够实现更可靠但也非常密集的结构连接组。然而,虽然现有的富俱乐部分析方法基于加权网络,但它本质上是基于度度量构建的,因此不适用于从此类密集网络中识别富俱乐部组织,因为它会产生度高得难以区分的节点。因此,我们提出了一种新方法,即使用组合H度和有效强度与h度比来识别富俱乐部组织(RICHER),以从密集加权网络中识别富俱乐部组织。总体而言,结果表明,与之前基于度的加权网络方法(即RC度)相比,使用我们提出的框架(即最先进的纤维束成像方法和我们提出的RICHER方法)可以实现更稳健的富俱乐部组织。此外,通过以三种方式模拟网络攻击,即对非富俱乐部/非富俱乐部边缘(NRC2NRC)、富俱乐部/非富俱乐部边缘(RC2NRC)和富俱乐部/富俱乐部边缘(RC2RC)的攻击,并根据全局效率(GE)降低来评估脑网络损伤后果。正如预期的那样,在各种条件下,使用我们提出的框架检测到了显著的GE降低,即NRC2NRC < RC2NRC、NRC2NRC < RC2RC和RC2NRC < RC2RC,而在其他情况下未检测到。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验