Cell and Developmental Biology Section, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, 92093-0116, USA.
College of Life Sciences & State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, China.
New Phytol. 2018 Oct;220(1):178-186. doi: 10.1111/nph.15292. Epub 2018 Jul 4.
Intracellular malate-starch interconversion plays an important role in stomatal movements. We investigated whether malate or oxaloacetate from the cytosolic membrane side regulate anion channels in the plasma membrane of Arabidopsis thaliana guard cells. Physiological concentrations of cytosolic malate have been reported in the range of 0.4-3 mM in leaf cells. Guard cell patch clamp and two-electrode oocyte voltage-clamp experiments were pursued. We show that a concentration of 1 mM cytosolic malate greatly activates S-type anion channels in Arabidopsis thaliana guard cells. Interestingly, 1 mM cytosolic oxaloacetate also activates S-type anion channels. Malate activation was abrogated at 10 mM malate and in SLAC1 anion channel mutant alleles. Interestingly, malate activation of S-type anion currents was disrupted at below resting cytosolic-free calcium concentrations ([Ca ] ), suggesting a key role for basal [Ca ] signaling. Cytosolic malate was not able to directly activate or enhance SLAC1-mediated anion currents in Xenopus oocytes, whereas in positive controls, cytosolic NaHCO enhanced SLAC1 activity, suggesting that malate may not directly modulate SLAC1. Cytosolic malate activation of S-type anion currents was impaired in ost1 and in cpk5/6/11/23 quadruple mutant guard cells. Together these findings show that these cytosolic organic anions function in guard cell 'plasma membrane' ion channel regulation.
细胞内的苹果酸-淀粉互变在气孔运动中起着重要作用。我们研究了细胞质膜侧的苹果酸或草酰乙酸是否调节拟南芥保卫细胞质膜中的阴离子通道。在叶细胞中,细胞质中苹果酸的生理浓度范围为 0.4-3 mM。进行了保卫细胞膜片钳和双电极卵母细胞电压钳实验。我们表明,1mM 细胞质苹果酸极大地激活了拟南芥保卫细胞中的 S 型阴离子通道。有趣的是,1mM 细胞质草酰乙酸也能激活 S 型阴离子通道。在 10mM 苹果酸和 SLAC1 阴离子通道突变等位基因中,苹果酸的激活作用被消除。有趣的是,在静息细胞质游离钙浓度 ([Ca ] ) 以下,苹果酸对 S 型阴离子电流的激活被破坏,这表明基础 [Ca ] 信号在其中起关键作用。细胞质苹果酸不能直接激活或增强 Xenopus 卵母细胞中的 SLAC1 介导的阴离子电流,而在阳性对照中,细胞质 NaHCO 增强了 SLAC1 的活性,这表明苹果酸可能不会直接调节 SLAC1。在 ost1 和 cpk5/6/11/23 四重突变保卫细胞中,S 型阴离子电流的细胞质苹果酸激活受损。这些发现表明这些细胞质有机阴离子在保卫细胞“质膜”离子通道调节中起作用。