Suppr超能文献

鉴定单原子铁模型配合物固氮的限速基元步骤。

Identifying the Rate-Limiting Elementary Steps of Nitrogen Fixation with Single-Site Fe Model Complexes.

机构信息

Department of Inorganic and Analytical Chemistry , Budapest University of Technology and Economics , Szent Gellért tér 4 , 1111 Budapest , Hungary.

Department of Chemical and Biological Engineering , University of Wisconsin-Madison , 1415 Engineering Drive , Madison , Wisconsin 53706 , United States.

出版信息

Inorg Chem. 2018 Jul 16;57(14):8499-8508. doi: 10.1021/acs.inorgchem.8b01183. Epub 2018 Jul 4.

Abstract

Biomimetic nitrogen fixation provides an attractive alternative for the century-old Haber-Bosch process; however, the performance of the currently available molecular biomimetic catalysts is very limited. In this work, we are aiming to understand the catalytic cycle of one of the most promising biomimetic complex families that can be the cornerstone of future computer-aided rational design of biomimetic complexes. We calculate the Gibbs free energy of all elementary reaction steps of homogeneous dinitrogen reduction to NH on single-site iron complexes with EPPP tetradentate ligands (E = B, Si). We examine all possible mechanisms and identify the dominant pathways and the critical elementary steps that can be rate-determining in the catalytic cycle of nitrogen fixation. We find that the catalytic mechanism depends on the applied ligand and that the distal pathway observed with E = B is the most favorable route regarding the catalytic performance. Our calculations also reveal the lack of thermodynamic driving force in the last steps of the catalytic cycle that can be responsible for the low catalytic activity of the studied biomimetic catalysts. Our results can serve as a starting point for the rational design of biomimetic complexes, which should focus on establishing a steadily decreasing Gibbs free energy profile, as suggested by the Sabatier principle.

摘要

仿生固氮为具有百年历史的哈伯-博世工艺提供了一种有吸引力的替代方案;然而,目前可用的分子仿生催化剂的性能非常有限。在这项工作中,我们旨在了解最有前途的仿生配合物家族之一的催化循环,该家族可能成为未来基于计算机的仿生配合物理性设计的基石。我们计算了具有 EPPP 四齿配体(E = B、Si)的单原子铁配合物将 dinitrogen 均相还原为 NH 的所有基本反应步骤的吉布斯自由能。我们检查了所有可能的机制,并确定了主导途径和关键的基本步骤,这些步骤可能是固氮催化循环中的速率决定步骤。我们发现催化机制取决于所施加的配体,并且对于催化性能而言,观察到的 E = B 的远端途径是最有利的途径。我们的计算还揭示了催化循环的最后步骤中缺乏热力学驱动力,这可能是研究的仿生催化剂活性低的原因。我们的结果可以作为仿生配合物理性设计的起点,正如 Sabatier 原理所建议的,这应侧重于建立逐渐降低的吉布斯自由能曲线。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验