Suppr超能文献

用于超灵敏光电化学免疫分析甲胎蛋白的无金属全碳纳米杂化材料。

Metal-Free All-Carbon Nanohybrid for Ultrasensitive Photoelectrochemical Immunosensing of alpha-Fetoprotein.

机构信息

School of Chemistry and Chemical Engineering, Medical School, Southeast University , Nanjing 211189 , China.

State Key Laboratory of Solid Lubrication & Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics , Chinese Academy of Sciences , Lanzhou 730000 , China.

出版信息

ACS Sens. 2018 Jul 27;3(7):1385-1391. doi: 10.1021/acssensors.8b00307. Epub 2018 Jul 18.

Abstract

C can accept up to six electrons reversibly and show exceptional light absorption over the entire UV-vis spectrum, making it a potential photoactive probe for photoelectrochemical (PEC) bioassay. However, few successful works have been reported to apply fullerenes in PEC biosensing, partially because of the low electronic conductivity and poor interfacial interactions with targeted biomolecules. Herein, we report the addressing of these two obstacles by coupling high conductive graphite flake (Gr), graphene oxide (GO) with sufficient oxygen-containing functional groups, and an alkylated C (AC) into a metal-free all-carbon nanohybrid (AC-Gr-GO) via harnessing delicate noncovalent interactions among them through a facile mechanical grinding. It was revealed that the as-obtained AC-Gr-GO nanohybrid not only showed conspicuous enhancement of photocurrent up to 35 times but also offered rich anchors for bioconjugation. With detection of alpha-fetoprotein as an example, the AC-Gr-GO based PEC immunosensor demonstrated a broad linear detection range (1 pg·mL to 100 ng·mL) and a detection limit as low as 0.54 pg·mL, superior/competitive to PEC immunosensors for AFP in previous reports. By a proper reinforcement in conductivity and biointerface engineering, this work may provide a new way to use fullerenes as photoactive materials in more general PEC biosensing.

摘要

C 可以可逆地接受多达六个电子,并在整个紫外可见光谱范围内表现出出色的光吸收,使其成为光电化学 (PEC) 生物分析的潜在光活性探针。然而,很少有成功的工作报道将富勒烯应用于 PEC 生物传感,部分原因是其电子导电性低,与目标生物分子的界面相互作用差。在此,我们通过利用它们之间精细的非共价相互作用,通过简便的机械研磨将高导电性石墨薄片 (Gr)、氧化石墨烯 (GO) 和烷基化 C (AC) 结合在一起,形成无金属全碳纳米杂化体 (AC-Gr-GO),从而解决了这两个障碍。结果表明,所获得的 AC-Gr-GO 纳米杂化物不仅表现出高达 35 倍的光电流显著增强,而且还提供了丰富的生物偶联附着点。以检测甲胎蛋白 (AFP) 为例,基于 AC-Gr-GO 的 PEC 免疫传感器表现出较宽的线性检测范围(1 pg·mL 至 100 ng·mL)和低至 0.54 pg·mL 的检测限,优于/优于之前 AFP 的 PEC 免疫传感器报告。通过适当增强导电性和生物界面工程,这项工作可能为将富勒烯用作更一般的 PEC 生物传感中的光活性材料提供一种新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验