Roy Ritayan, Rushton Jo, Dragomir Andrei, Aldous Matthew, Himsworth Matt
School of Physics and Astronomy, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom.
School of Mathematical and Physical Sciences, University of Sussex, Falmer Campus, Brighton, BN1 9QH, United Kingdom.
Sci Rep. 2018 Jul 4;8(1):10095. doi: 10.1038/s41598-018-28464-0.
We describe the application of displaced, or misaligned, beams in a mirror-based magneto-optical trap (MOT) to enable portable and miniaturized atom chip experiments where optical access is limited to a single window. Two different geometries of beam displacement are investigated: a variation on the well-known 'vortex-MOT', and the other a novel 'hybrid-MOT' combining Zeeman-shifted and purely optical scattering force components. The beam geometry is obtained similar to the mirror-MOT, using a planar mirror surface but with a different magnetic field geometry more suited to planar systems. Using these techniques, we have trapped around 6 × 10 and 26 × 10 atoms of Rb in the vortex-MOT and hybrid-MOT respectively. For the vortex-MOT the atoms are directly cooled well below the Doppler temperature without any additional sub-Doppler cooling stage, whereas the temperature of the hybrid-MOT has been measured slightly above the Doppler temperature limit. In both cases the attained lower temperature ensures the quantum behaviour of the trapped atoms required for the applications of portable quantum sensors and many others.
我们描述了在基于镜子的磁光阱(MOT)中使用位移或未对准光束,以实现便携式和小型化原子芯片实验,此类实验的光学通道仅限于单个窗口。研究了两种不同的光束位移几何结构:一种是著名的“涡旋 - MOT”的变体,另一种是结合了塞曼位移和纯光学散射力分量的新型“混合 - MOT”。光束几何结构的获得类似于镜子 - MOT,使用平面镜表面,但具有更适合平面系统的不同磁场几何结构。使用这些技术,我们分别在涡旋 - MOT和混合 - MOT中捕获了约6×10⁴和26×10⁴个铷原子。对于涡旋 - MOT,原子在没有任何额外亚多普勒冷却阶段的情况下被直接冷却到远低于多普勒温度,而混合 - MOT的温度经测量略高于多普勒温度极限。在这两种情况下,所达到的较低温度确保了便携式量子传感器及许多其他应用所需的捕获原子的量子行为。