University of Kiel, Institute of Inorganic Chemistry, Max-Eyth-Str. 2, D-24118 Kiel, Germany.
Phys Chem Chem Phys. 2018 Jul 18;20(28):19129-19141. doi: 10.1039/c8cp02919a.
We report on results of a comprehensive investigation on reaction mechanisms occurring during Li uptake and release of the composite NiFe2O4/CNT. Operando X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) data collected simultaneously using one in situ cell allowed thorough elucidation of structural and electronic alterations happening during Li uptake. From the beginning of Li uptake, the Bragg intensity of the spinel reflections decreases which can be explained by reduction of Fe3+ ions and simultaneous movement of the Fe2+ cations from tetrahedral 8a to empty octahedral 16c sites. The reduction of Fe3+ is clearly evidenced by XAS. The occupation of tetrahedral sites by Li+ can be excluded based on results of density functional theory calculations. Increasing the Li content leads to formation of a new crystalline phase resembling a monoxide with a NaCl-like structure. The appearance of the new phase is accompanied by a steady decrease of the sizes of coherently scattering domains of the spinel and a growth of the domains of the monoxide phase. After uptake of about 2.5 Li per NiFe2O4, all Fe3+ cations are reduced to Fe2+ and the tetrahedral 8a sites are empty (XAS spectra). Careful Rietveld refinements of X-ray powder patterns demonstrate that the tetrahedral 8a site is successively depleted with increasing Li content. Interestingly, the occupancy of the octahedral 16d site is also slightly reduced. Increasing the Li content beyond 2.5 Li/NiFe2O4 leads to successive reduction of the cations to very small metal particles embedded in a Li2O matrix (as evidenced by 7Li MAS NMR investigations). During Li release metallic Ni and Fe are reoxidized to Ni2+ resp. Fe3+. The cycling stability of NiFe2O4/CNT is significantly improved compared to pure NiFe2O4 or a mechanical mixture of NiFe2O4 and CNTs.
我们报告了关于 NiFe2O4/CNT 复合材料在锂吸收和释放过程中反应机制的综合研究结果。使用一个原位电池同时收集的 operando X 射线衍射 (XRD) 和 X 射线吸收光谱 (XAS) 数据允许彻底阐明锂吸收过程中发生的结构和电子变化。从锂吸收开始,尖晶石反射的布拉格强度降低,这可以解释为 Fe3+离子的还原和 Fe2+阳离子从四面体 8a 位置向空的八面体 16c 位置的同时迁移。XAS 清楚地证明了 Fe3+的还原。基于密度泛函理论计算的结果,可以排除 Li+占据四面体位置的可能性。随着锂含量的增加,形成了一种类似于具有 NaCl 结构的氧化物的新晶相。新相的出现伴随着尖晶石的相干散射畴尺寸的稳定减小和氧化物相的畴的生长。在 NiFe2O4 每摩尔吸收约 2.5 个锂后,所有的 Fe3+阳离子都被还原为 Fe2+,四面体 8a 位置为空(XAS 光谱)。对 X 射线粉末图谱的仔细 Rietveld 精修表明,随着锂含量的增加,四面体 8a 位置逐渐耗尽。有趣的是,八面体 16d 位置的占据也略有减少。随着锂含量超过 2.5 Li/NiFe2O4,阳离子连续还原为嵌入 Li2O 基质中的非常小的金属颗粒(如 7Li MAS NMR 研究所示)。在锂释放过程中,金属 Ni 和 Fe 被重新氧化为 Ni2+和 Fe3+。与纯 NiFe2O4 或 NiFe2O4 和 CNTs 的机械混合物相比,NiFe2O4/CNT 的循环稳定性得到了显著提高。