Suppr超能文献

基于大小与概率成比例的聚类抽样的贝叶斯推断。

Bayesian inference under cluster sampling with probability proportional to size.

机构信息

Department of Statistics, Columbia University, New York, New York.

Survey Research Center, University of Michigan, Ann Arbor, Michigan.

出版信息

Stat Med. 2018 Nov 20;37(26):3849-3868. doi: 10.1002/sim.7892. Epub 2018 Jul 4.

Abstract

Cluster sampling is common in survey practice, and the corresponding inference has been predominantly design based. We develop a Bayesian framework for cluster sampling and account for the design effect in the outcome modeling. We consider a two-stage cluster sampling design where the clusters are first selected with probability proportional to cluster size, and then units are randomly sampled inside selected clusters. Challenges arise when the sizes of the nonsampled cluster are unknown. We propose nonparametric and parametric Bayesian approaches for predicting the unknown cluster sizes, with this inference performed simultaneously with the model for survey outcome, with computation performed in the open-source Bayesian inference engine Stan. Simulation studies show that the integrated Bayesian approach outperforms classical methods with efficiency gains, especially under informative cluster sampling design with small number of selected clusters. We apply the method to the Fragile Families and Child Wellbeing study as an illustration of inference for complex health surveys.

摘要

整群抽样在调查实践中很常见,相应的推断主要基于设计。我们为整群抽样开发了一个贝叶斯框架,并在结果建模中考虑了设计效果。我们考虑了两阶段整群抽样设计,其中首先以与群大小成比例的概率选择群,然后在选定的群内随机抽取单位。当未知的未抽样群的大小出现时,就会出现挑战。我们提出了非参数和参数贝叶斯方法来预测未知的群大小,这种推断与调查结果模型同时进行,计算在开源贝叶斯推理引擎 Stan 中进行。模拟研究表明,集成贝叶斯方法在效率上优于经典方法,尤其是在具有少量选定群的信息丰富的整群抽样设计下。我们将该方法应用于脆弱家庭和儿童福利研究,作为复杂健康调查推断的一个例子。

相似文献

1
Bayesian inference under cluster sampling with probability proportional to size.
Stat Med. 2018 Nov 20;37(26):3849-3868. doi: 10.1002/sim.7892. Epub 2018 Jul 4.
3
Optimal two-stage sampling for mean estimation in multilevel populations when cluster size is informative.
Stat Methods Med Res. 2021 Feb;30(2):357-375. doi: 10.1177/0962280220952833. Epub 2020 Sep 17.
4
Bayesian evaluation of informative hypotheses in cluster-randomized trials.
Behav Res Methods. 2019 Feb;51(1):126-137. doi: 10.3758/s13428-018-1149-x.
6
Consensus clustering for Bayesian mixture models.
BMC Bioinformatics. 2022 Jul 21;23(1):290. doi: 10.1186/s12859-022-04830-8.
7
Bayesian predictive inference for units with small sample sizes. The case of binary random variables.
Med Care. 1993 May;31(5 Suppl):YS66-70. doi: 10.1097/00005650-199305001-00010.
8
A Nonparametric Bayesian Model for Nested Clustering.
Methods Mol Biol. 2016;1362:129-41. doi: 10.1007/978-1-4939-3106-4_8.
9
Bayesian Inference of Finite Population Quantiles for Skewed Survey Data Using Skew-Normal Penalized Spline Regression.
J Surv Stat Methodol. 2020 Sep;8(4):792-816. doi: 10.1093/jssam/smz016. Epub 2019 Sep 3.
10
Bayesian inference from count data using discrete uniform priors.
PLoS One. 2013 Oct 7;8(10):e74388. doi: 10.1371/journal.pone.0074388. eCollection 2013.

引用本文的文献

1
On the Use of Auxiliary Variables in Multilevel Regression and Poststratification.
Stat Sci. 2025 May;40(2):272-288. doi: 10.1214/24-sts932. Epub 2025 Jun 2.
3
Bayesian estimation methods for survey data with potential applications to health disparities research.
Wiley Interdiscip Rev Comput Stat. 2024 Jan-Feb;16(1). doi: 10.1002/wics.1633. Epub 2023 Aug 28.
4
Embedded multilevel regression and poststratification: Model-based inference with incomplete auxiliary information.
Stat Med. 2024 Jan 30;43(2):256-278. doi: 10.1002/sim.9956. Epub 2023 Nov 15.
6
Using Small Area Prevalence Survey Methods to Conduct Blood Lead Assessments among Children.
Int J Environ Res Public Health. 2022 May 18;19(10):6151. doi: 10.3390/ijerph19106151.

本文引用的文献

1
Multiple Imputation in Two-Stage Cluster Samples Using The Weighted Finite Population Bayesian Bootstrap.
J Surv Stat Methodol. 2016 Jun 1;4(2):139-170. doi: 10.1093/jssam/smv031. Epub 2016 Jan 31.
3
Design of cross-sectional surveys using cluster sampling: an overview with Australian case studies.
Aust N Z J Public Health. 1999 Oct;23(5):546-51. doi: 10.1111/j.1467-842x.1999.tb01317.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验