Suppr超能文献

头颈部癌症中通过概率治疗计划将患者几何变化纳入自适应计划优化的剂量学评估。

Dosimetric Evaluation of Incorporating Patient Geometric Variations Into Adaptive Plan Optimization Through Probabilistic Treatment Planning in Head and Neck Cancers.

机构信息

Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan.

Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan.

出版信息

Int J Radiat Oncol Biol Phys. 2018 Jul 15;101(4):985-997. doi: 10.1016/j.ijrobp.2018.03.062. Epub 2018 Apr 5.

Abstract

PURPOSE

Four-dimensional (4D) adaptive radiation therapy (ART) treatment planning is an alternative to the conventional margin-based treatment planning approach. In 4D ART, interfraction patient geometric variations, gathered from computed tomography (CT) or cone beam CT (CBCT) images acquired during the patient treatment course, are directly incorporated into the adaptive plan optimization using a probabilistic treatment planning method. The goal of the present planning study was to evaluate the dosimetric differences between 4D ART and conventional margin-based adaptive planning strategies for head and neck cancers. In addition, we examined whether the dose differences achieved with 4D ART would translate into clinically relevant toxicity reductions using the existing normal tissue complication probability (NTCP) models.

METHODS AND MATERIALS

For 18 head and neck cancer patients, the treatment plans were retrospectively generated for 4 different treatment strategies, including a solely image guided radiation therapy (IGRT) strategy (IGRT-only), 2 conventional adaptive treatment planning strategies using 3- and 0-mm planning target volume (PTV) margins, and the 4D ART strategy. In the IGRT-only strategy, a conventional 3-mm PTV margin treatment plan was applied for the entire treatment course. In the 2 conventional adaptive strategies, 2 new treatment plans were generated during the treatment course using diagnostic planning CT scans acquired after the 10th and 22nd fractions. The 4D ART followed the same adaptive schedule, except that the 4D adaptive plan was generated using 5 CBCT images acquired during the 5 most recent treatment fractions. For each strategy, the actual delivered dose for the entire treatment course was constructed by calculating the daily doses on 35 CBCT scans, deforming back to the pretreatment planning CT scan, and accumulating over all 35 fractions. The target coverage was evaluated using the percentage of target volume receiving ≥100% of the prescription dose (V) and the minimum dose to 99% of the target volume (D). It was considered adequate if the V was ≥95% and the dose deficit in D was ≤2 Gy (with respect to the prescription dose). For each strategy, the dose received by the organs at risk (OARs) was also evaluated, and the corresponding NTCP values were subsequently calculated using 3 NTCP models.

RESULTS

Adequate target coverage was achieved for the primary clinical target volume (CTV1) and elective nodal CTV (CTV2) with a 3-mm PTV margin, regardless of adaptation. The 3-mm ART plan reduced the OAR mean dose by 1 to 2 Gy compared with the IGRT-only plan. The 0-mm ART plan further reduced the OAR dose by another 2 to 3 Gy at the expense of target coverage: 3 and 1 patient had V <95%, and 6 and 5 patients had a >2 Gy dose deficit in D for the CTV1 and CTV2, respectively. Use of 4D ART improved target coverage and attained OAR sparing similar to that with 0-mm ART. The number of patients with V <95% and >2 Gy D deficit decreased to 0 and 0 for CTV1 and 0 and 2 for CTV2, respectively. The NTCP calculations suggested that 4D ART could benefit a substantial portion of patients compared with IGRT-only because 17 and 12 patients had ≥5% and ≥10% NTCP reductions for parotid toxicity and 18 and 3 patients had ≥5% and ≥10% NTCP reductions for swallowing toxicity, respectively.

CONCLUSIONS

Compared with margin-based adaptive planning strategies, 4D ART provides a better balance between target coverage and OAR sparing. NTCP estimation predicted for theoretical clinical benefits that warrant further clinical validation.

摘要

目的

四维(4D)自适应放射治疗(ART)治疗计划是基于常规边界的治疗计划方法的替代方法。在 4D ART 中,从患者治疗过程中获取的计算机断层扫描(CT)或锥形束 CT(CBCT)图像中收集的分次间患者几何变化,使用概率治疗计划方法直接纳入自适应计划优化中。本规划研究的目的是评估头颈部癌症的 4D ART 和基于常规边界的自适应规划策略之间的剂量差异。此外,我们还研究了 4D ART 实现的剂量差异是否会通过使用现有的正常组织并发症概率(NTCP)模型转化为临床相关的毒性降低。

方法和材料

对 18 名头颈部癌症患者,回顾性地为 4 种不同的治疗策略生成了治疗计划,包括单纯图像引导放射治疗(IGRT)策略(IGRT-only)、使用 3-和 0-mm 计划靶区(PTV)边界的 2 种常规自适应治疗策略,以及 4D ART 策略。在 IGRT-only 策略中,应用常规的 3-mm PTV 边界治疗计划对整个治疗过程进行治疗。在 2 种常规自适应策略中,在第 10 次和第 22 次分次后获取诊断性计划 CT 扫描时,在治疗过程中生成了 2 个新的治疗计划。4D ART 遵循相同的自适应计划时间表,只是在 5 个最近的治疗分次中使用 5 次 CBCT 扫描生成 4D 自适应计划。对于每种策略,通过计算 35 次 CBCT 扫描上的每日剂量,将实际整个治疗过程的剂量构建回预处理计划 CT 扫描,并在所有 35 个分次上进行累积。使用目标体积接受≥100%处方剂量(V)的百分比和目标体积的 99%的最小剂量(D)来评估靶区覆盖率。如果 V≥95%,并且 D 中的剂量不足≤2 Gy(相对于处方剂量),则认为是足够的。对于每种策略,还评估了危及器官(OAR)的剂量,并使用 3 个 NTCP 模型随后计算相应的 NTCP 值。

结果

对于使用 3-mm PTV 边界的主要临床靶区(CTV1)和选择性淋巴结CTV(CTV2),足够的靶区覆盖率是可以实现的,无论是否进行自适应。与 IGRT-only 计划相比,3-mm ART 计划将 OAR 的平均剂量降低了 1 到 2 Gy。0-mm ART 计划进一步降低了 2 到 3 Gy 的 OAR 剂量,代价是靶区覆盖率的降低:3 和 1 名患者的 V<95%,6 和 5 名患者的 CTV1 和 CTV2 的 D 中存在>2 Gy 的剂量不足。使用 4D ART 可改善靶区覆盖率,并达到与 0-mm ART 相似的 OAR 保护效果。V<95%和 D 中>2 Gy 剂量不足的患者数量分别减少到 0 和 0(CTV1)和 0 和 2(CTV2)。NTCP 计算表明,与 IGRT-only 相比,4D ART 可能使大部分患者受益,因为 17 和 12 名患者的腮腺毒性 NTCP 降低了≥5%和≥10%,18 和 3 名患者的吞咽毒性 NTCP 降低了≥5%和≥10%。

结论

与基于边界的自适应规划策略相比,4D ART 在靶区覆盖率和 OAR 保护之间提供了更好的平衡。NTCP 估计预测了理论上的临床益处,需要进一步的临床验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验