Reuvers R
Department of Applied Mathematics and Theoretical Physics (DAMTP), Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK.
Proc Math Phys Eng Sci. 2018 Jun;474(2214):20180023. doi: 10.1098/rspa.2018.0023. Epub 2018 Jun 13.
A quantum state's entanglement across a bipartite cut can be quantified with entanglement entropy or, more generally, Schmidt norms. Using only Schmidt decompositions, we present a simple iterative algorithm to maximize Schmidt norms. Depending on the choice of norm, the optimizing states maximize or minimize entanglement, possibly across several bipartite cuts at the same time and possibly only among states in a specified subspace. Recognizing that convergence but not success is certain, we use the algorithm to explore topics ranging from fermionic reduced density matrices and varieties of pure quantum states to absolutely maximally entangled states and minimal output entropy of channels.
量子态在二分切割上的纠缠可以用纠缠熵来量化,或者更一般地,用施密特范数来量化。仅使用施密特分解,我们提出一种简单的迭代算法来最大化施密特范数。根据范数的选择,优化后的态会使纠缠最大化或最小化,可能同时跨越多个二分切割,也可能仅在指定子空间中的态之间进行。认识到收敛是确定的但成功不是,我们使用该算法来探索从费米子约化密度矩阵和各种纯量子态到绝对最大纠缠态和信道的最小输出熵等主题。