Op de Beeck Jonathan, Labyedh Nouha, Sepúlveda Alfonso, Spampinato Valentina, Franquet Alexis, Conard Thierry, Vereecken Philippe M, Vandervorst Wilfried, Celano Umberto
IMEC, Kapeldreef 75, 3001 Leuven, Belgium.
KU Leuven, Department of Physics and Astronomy, Celestijnenlaan 200D, B-3001 Leuven, Belgium.
Beilstein J Nanotechnol. 2018 Jun 4;9:1623-1628. doi: 10.3762/bjnano.9.154. eCollection 2018.
The continuous demand for improved performance in energy storage is driving the evolution of Li-ion battery technology toward emerging battery architectures such as 3D all-solid-state microbatteries (ASB). Being based on solid-state ionic processes in thin films, these new energy storage devices require adequate materials analysis techniques to study ionic and electronic phenomena. This is key to facilitate their commercial introduction. For example, in the case of cathode materials, structural, electrical and chemical information must be probed at the nanoscale and in the same area, to identify the ionic processes occurring inside each individual layer and understand the impact on the entire battery cell. In this work, we pursue this objective by using two well established nanoscale analysis techniques namely conductive atomic force microscopy (C-AFM) and secondary ion mass spectrometry (SIMS). We present a platform to study Li-ion composites with nanometer resolution that allows one to sense a multitude of key characteristics including structural, electrical and chemical information. First, we demonstrate the capability of a biased AFM tip to perform field-induced ionic migration in thin (cathode) films and its diagnosis through the observation of the local resistance change. The latter is ascribed to the internal rearrangement of Li-ions under the effect of a strong and localized electric field. Second, the combination of C-AFM and SIMS is used to correlate electrical conductivity and local chemistry in different cathodes for application in ASB. Finally, a promising starting point towards quantitative electrochemical information starting from C-AFM is indicated.
对提高储能性能的持续需求正推动锂离子电池技术向诸如三维全固态微电池(ASB)等新兴电池架构发展。基于薄膜中的固态离子过程,这些新型储能设备需要适当的材料分析技术来研究离子和电子现象。这是促进其商业推广的关键。例如,对于阴极材料,必须在纳米尺度且在同一区域探测结构、电学和化学信息,以识别每个单独层内发生的离子过程,并了解其对整个电池单元的影响。在这项工作中,我们通过使用两种成熟的纳米尺度分析技术,即导电原子力显微镜(C-AFM)和二次离子质谱(SIMS)来实现这一目标。我们展示了一个用于研究具有纳米分辨率的锂离子复合材料的平台,该平台能够感知包括结构、电学和化学信息在内的多种关键特性。首先,我们展示了偏置的原子力显微镜探针在薄(阴极)膜中执行场诱导离子迁移的能力,以及通过观察局部电阻变化对其进行诊断。后者归因于在强且局部的电场作用下锂离子的内部重排。其次,将C-AFM和SIMS结合起来,用于关联不同阴极中的电导率和局部化学性质,以应用于ASB。最后,指出了从C-AFM获取定量电化学信息的一个有前景的起点。