Suppr超能文献

使用伪值回归检验中心效应在生存和竞争风险结果方面的影响。

Testing for center effects on survival and competing risks outcomes using pseudo-value regression.

作者信息

Wang Yanzhi, Logan Brent R

机构信息

Division of Research Services/Department of Medicine, University of Illinois College of Medicine at Peoria, 1 Illini Dr., Peoria, IL, 61605, USA.

Division of Biostatistics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.

出版信息

Lifetime Data Anal. 2019 Apr;25(2):206-228. doi: 10.1007/s10985-018-9443-6. Epub 2018 Jul 5.

Abstract

In multi-center studies, the presence of a cluster effect leads to correlation among outcomes within a center and requires different techniques to handle such correlation. Testing for a cluster effect can serve as a pre-screening step to help guide the researcher towards the appropriate analysis. With time to event data, score tests have been proposed which test for the presence of a center effect on the hazard function. However, sometimes researchers are interested in directly modeling other quantities such as survival probabilities or cumulative incidence at a fixed time. We propose a test for the presence of a center effect acting directly on the quantity of interest using pseudo-value regression, and derive the asymptotic properties of our proposed test statistic. We examine the performance of our proposed test through simulation studies in both survival and competing risks settings. The proposed test may be more powerful than tests based on the hazard function in settings where the center effect is time-varying. We illustrate the test using a multicenter registry study of survival and competing risks outcomes after hematopoietic cell transplantation.

摘要

在多中心研究中,聚类效应的存在会导致中心内各结果之间产生相关性,因此需要采用不同的技术来处理这种相关性。对聚类效应进行检验可作为一个预筛选步骤,以帮助研究者选择合适的分析方法。对于生存时间数据,已有人提出了计分检验,用于检验中心效应是否存在于风险函数中。然而,有时研究者感兴趣的是直接对其他量进行建模,比如固定时间点的生存概率或累积发病率。我们提出了一种使用伪值回归来检验直接作用于感兴趣量的中心效应是否存在的方法,并推导了我们所提出的检验统计量的渐近性质。我们通过在生存和竞争风险设定下的模拟研究来考察所提检验的性能。在中心效应随时间变化的情况下,所提检验可能比基于风险函数的检验更具功效。我们通过一项关于造血细胞移植后生存和竞争风险结果的多中心登记研究来说明该检验。

相似文献

1
Testing for center effects on survival and competing risks outcomes using pseudo-value regression.
Lifetime Data Anal. 2019 Apr;25(2):206-228. doi: 10.1007/s10985-018-9443-6. Epub 2018 Jul 5.
2
Marginal models for clustered time-to-event data with competing risks using pseudovalues.
Biometrics. 2011 Mar;67(1):1-7. doi: 10.1111/j.1541-0420.2010.01416.x.
3
Dynamic pseudo-observations: a robust approach to dynamic prediction in competing risks.
Biometrics. 2013 Dec;69(4):1043-52. doi: 10.1111/biom.12061. Epub 2013 Jul 19.
4
Stagewise pseudo-value regression for time-varying effects on the cumulative incidence.
Stat Med. 2016 Mar 30;35(7):1144-58. doi: 10.1002/sim.6770. Epub 2015 Oct 28.
5
Tree-based models for survival data with competing risks.
Comput Methods Programs Biomed. 2018 Jun;159:185-198. doi: 10.1016/j.cmpb.2018.03.017. Epub 2018 Mar 21.
6
Model selection in competing risks regression.
Stat Med. 2013 Aug 15;32(18):3077-88. doi: 10.1002/sim.5762. Epub 2013 Feb 24.
7
A simulation procedure based on copulas to generate clustered multi-state survival data.
Comput Methods Programs Biomed. 2013 Mar;109(3):305-12. doi: 10.1016/j.cmpb.2012.09.003. Epub 2012 Oct 23.
8
Cumulative risk regression in case-cohort studies using pseudo-observations.
Lifetime Data Anal. 2020 Oct;26(4):639-658. doi: 10.1007/s10985-020-09492-3. Epub 2020 Jan 13.

引用本文的文献

本文引用的文献

1
The Kaplan-Meier Estimator as an Inverse-Probability-of-Censoring Weighted Average.
Am Stat. 2001;55(3):207-210. doi: 10.1198/000313001317098185. Epub 2012 Jan 1.
2
Comparison of stopped Cox regression with direct methods such as pseudo-values and binomial regression.
Lifetime Data Anal. 2015 Apr;21(2):180-96. doi: 10.1007/s10985-014-9299-3. Epub 2014 Aug 2.
3
Estimating and testing for center effects in competing risks.
Stat Med. 2011 Jun 15;30(13):1608-17. doi: 10.1002/sim.4132. Epub 2011 Feb 22.
4
Marginal models for clustered time-to-event data with competing risks using pseudovalues.
Biometrics. 2011 Mar;67(1):1-7. doi: 10.1111/j.1541-0420.2010.01416.x.
5
Pseudo-observations in survival analysis.
Stat Methods Med Res. 2010 Feb;19(1):71-99. doi: 10.1177/0962280209105020. Epub 2009 Aug 4.
6
On pseudo-values for regression analysis in competing risks models.
Lifetime Data Anal. 2009 Jun;15(2):241-55. doi: 10.1007/s10985-008-9107-z. Epub 2008 Dec 3.
7
Dynamic predicting by landmarking as an alternative for multi-state modeling: an application to acute lymphoid leukemia data.
Lifetime Data Anal. 2008 Dec;14(4):447-63. doi: 10.1007/s10985-008-9099-8. Epub 2008 Oct 3.
8
Analyzing survival curves at a fixed point in time.
Stat Med. 2007 Oct 30;26(24):4505-19. doi: 10.1002/sim.2864.
9
Regression modeling of competing risks data based on pseudovalues of the cumulative incidence function.
Biometrics. 2005 Mar;61(1):223-9. doi: 10.1111/j.0006-341X.2005.031209.x.
10
Regression analysis of restricted mean survival time based on pseudo-observations.
Lifetime Data Anal. 2004 Dec;10(4):335-50. doi: 10.1007/s10985-004-4771-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验