Wang Yanzhi, Logan Brent R
Division of Research Services/Department of Medicine, University of Illinois College of Medicine at Peoria, 1 Illini Dr., Peoria, IL, 61605, USA.
Division of Biostatistics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
Lifetime Data Anal. 2019 Apr;25(2):206-228. doi: 10.1007/s10985-018-9443-6. Epub 2018 Jul 5.
In multi-center studies, the presence of a cluster effect leads to correlation among outcomes within a center and requires different techniques to handle such correlation. Testing for a cluster effect can serve as a pre-screening step to help guide the researcher towards the appropriate analysis. With time to event data, score tests have been proposed which test for the presence of a center effect on the hazard function. However, sometimes researchers are interested in directly modeling other quantities such as survival probabilities or cumulative incidence at a fixed time. We propose a test for the presence of a center effect acting directly on the quantity of interest using pseudo-value regression, and derive the asymptotic properties of our proposed test statistic. We examine the performance of our proposed test through simulation studies in both survival and competing risks settings. The proposed test may be more powerful than tests based on the hazard function in settings where the center effect is time-varying. We illustrate the test using a multicenter registry study of survival and competing risks outcomes after hematopoietic cell transplantation.
在多中心研究中,聚类效应的存在会导致中心内各结果之间产生相关性,因此需要采用不同的技术来处理这种相关性。对聚类效应进行检验可作为一个预筛选步骤,以帮助研究者选择合适的分析方法。对于生存时间数据,已有人提出了计分检验,用于检验中心效应是否存在于风险函数中。然而,有时研究者感兴趣的是直接对其他量进行建模,比如固定时间点的生存概率或累积发病率。我们提出了一种使用伪值回归来检验直接作用于感兴趣量的中心效应是否存在的方法,并推导了我们所提出的检验统计量的渐近性质。我们通过在生存和竞争风险设定下的模拟研究来考察所提检验的性能。在中心效应随时间变化的情况下,所提检验可能比基于风险函数的检验更具功效。我们通过一项关于造血细胞移植后生存和竞争风险结果的多中心登记研究来说明该检验。