Suppr超能文献

使用伪值对具有竞争风险的聚类事件发生时间数据的边际模型。

Marginal models for clustered time-to-event data with competing risks using pseudovalues.

作者信息

Logan Brent R, Zhang Mei-Jie, Klein John P

机构信息

Division of Biostatistics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA.

出版信息

Biometrics. 2011 Mar;67(1):1-7. doi: 10.1111/j.1541-0420.2010.01416.x.

Abstract

Many time-to-event studies are complicated by the presence of competing risks and by nesting of individuals within a cluster, such as patients in the same center in a multicenter study. Several methods have been proposed for modeling the cumulative incidence function with independent observations. However, when subjects are clustered, one needs to account for the presence of a cluster effect either through frailty modeling of the hazard or subdistribution hazard, or by adjusting for the within-cluster correlation in a marginal model. We propose a method for modeling the marginal cumulative incidence function directly. We compute leave-one-out pseudo-observations from the cumulative incidence function at several time points. These are used in a generalized estimating equation to model the marginal cumulative incidence curve, and obtain consistent estimates of the model parameters. A sandwich variance estimator is derived to adjust for the within-cluster correlation. The method is easy to implement using standard software once the pseudovalues are obtained, and is a generalization of several existing models. Simulation studies show that the method works well to adjust the SE for the within-cluster correlation. We illustrate the method on a dataset looking at outcomes after bone marrow transplantation.

摘要

许多生存时间研究因存在竞争风险以及个体嵌套于群组中(如多中心研究中同一中心的患者)而变得复杂。针对具有独立观测值的累积发病率函数建模,已提出了几种方法。然而,当研究对象存在聚类时,需要通过对风险或子分布风险进行脆弱性建模,或者在边际模型中对聚类内相关性进行调整,来考虑聚类效应的存在。我们提出了一种直接对边际累积发病率函数进行建模的方法。我们在几个时间点从累积发病率函数计算留一法伪观测值。这些伪观测值用于广义估计方程中,以对边际累积发病率曲线进行建模,并获得模型参数的一致估计。我们推导了一个三明治方差估计量,以调整聚类内相关性。一旦获得伪值,该方法使用标准软件很容易实现,并且是对几种现有模型的推广。模拟研究表明,该方法能很好地针对聚类内相关性调整标准误。我们在一个观察骨髓移植后结局的数据集上展示了该方法。

相似文献

1
Marginal models for clustered time-to-event data with competing risks using pseudovalues.
Biometrics. 2011 Mar;67(1):1-7. doi: 10.1111/j.1541-0420.2010.01416.x.
2
A positive stable frailty model for clustered failure time data with covariate-dependent frailty.
Biometrics. 2011 Mar;67(1):8-17. doi: 10.1111/j.1541-0420.2010.01444.x.
3
Regression modeling of competing risks data based on pseudovalues of the cumulative incidence function.
Biometrics. 2005 Mar;61(1):223-9. doi: 10.1111/j.0006-341X.2005.031209.x.
4
Competing risks regression for clustered data.
Biostatistics. 2012 Jul;13(3):371-83. doi: 10.1093/biostatistics/kxr032. Epub 2011 Oct 31.
6
Testing for center effects on survival and competing risks outcomes using pseudo-value regression.
Lifetime Data Anal. 2019 Apr;25(2):206-228. doi: 10.1007/s10985-018-9443-6. Epub 2018 Jul 5.
7
Dynamic pseudo-observations: a robust approach to dynamic prediction in competing risks.
Biometrics. 2013 Dec;69(4):1043-52. doi: 10.1111/biom.12061. Epub 2013 Jul 19.
8
Proportional hazards regression for the analysis of clustered survival data from case-cohort studies.
Biometrics. 2011 Mar;67(1):18-28. doi: 10.1111/j.1541-0420.2010.01445.x.
9
Semiparametric competing risks regression under interval censoring using the R package intccr.
Comput Methods Programs Biomed. 2019 May;173:167-176. doi: 10.1016/j.cmpb.2019.03.002. Epub 2019 Mar 8.
10
Modeling clustered long-term survivors using marginal mixture cure model.
Biom J. 2018 Jul;60(4):780-796. doi: 10.1002/bimj.201700114. Epub 2018 May 7.

引用本文的文献

1
Competing risks regression for clustered data with covariate-dependent censoring.
Commun Stat Theory Methods. 2025;54(4):1081-1099. doi: 10.1080/03610926.2024.2329771. Epub 2024 Mar 31.
2
Adjusted curves for clustered survival and competing risks data.
Commun Stat Simul Comput. 2025;54(1):120-143. doi: 10.1080/03610918.2023.2245583. Epub 2023 Aug 16.
5
Adjusting for informative cluster size in pseudo-value-based regression approaches with clustered time to event data.
Stat Med. 2023 Jun 15;42(13):2162-2178. doi: 10.1002/sim.9716. Epub 2023 Mar 27.
6
Simulating time-to-event data subject to competing risks and clustering: A review and synthesis.
Stat Methods Med Res. 2023 Feb;32(2):305-333. doi: 10.1177/09622802221136067. Epub 2022 Nov 22.
7
Marginal semiparametric transformation models for clustered multivariate competing risks data.
Stat Med. 2022 Nov 20;41(26):5349-5364. doi: 10.1002/sim.9573. Epub 2022 Sep 18.
8
Regression modeling of restricted mean survival time for left-truncated right-censored data.
Stat Med. 2022 Jul 20;41(16):3003-3021. doi: 10.1002/sim.9399. Epub 2022 Mar 28.
9
A comparison of statistical methods to predict the residual lifetime risk.
Eur J Epidemiol. 2022 Feb;37(2):173-194. doi: 10.1007/s10654-021-00815-8. Epub 2022 Jan 3.
10
Optimal treatment regimes for competing risk data using doubly robust outcome weighted learning with bi-level variable selection.
Comput Stat Data Anal. 2021 Jun;158. doi: 10.1016/j.csda.2021.107167. Epub 2021 Jan 14.

本文引用的文献

1
The Kaplan-Meier Estimator as an Inverse-Probability-of-Censoring Weighted Average.
Am Stat. 2001;55(3):207-210. doi: 10.1198/000313001317098185. Epub 2012 Jan 1.
2
On pseudo-values for regression analysis in competing risks models.
Lifetime Data Anal. 2009 Jun;15(2):241-55. doi: 10.1007/s10985-008-9107-z. Epub 2008 Dec 3.
3
SAS and R functions to compute pseudo-values for censored data regression.
Comput Methods Programs Biomed. 2008 Mar;89(3):289-300. doi: 10.1016/j.cmpb.2007.11.017. Epub 2008 Jan 15.
4
Competing risks analysis of correlated failure time data.
Biometrics. 2008 Mar;64(1):172-9. doi: 10.1111/j.1541-0420.2007.00868.x. Epub 2007 Aug 3.
5
Analyzing survival curves at a fixed point in time.
Stat Med. 2007 Oct 30;26(24):4505-19. doi: 10.1002/sim.2864.
7
Regression modeling of competing risks data based on pseudovalues of the cumulative incidence function.
Biometrics. 2005 Mar;61(1):223-9. doi: 10.1111/j.0006-341X.2005.031209.x.
8
Score test of homogeneity for survival data.
Lifetime Data Anal. 1995;1(2):145-56; discussion 157-9. doi: 10.1007/BF00985764.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验