Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
Centro de Investigaciones Biológicas (CIB-CSIC), Madrid, Spain.
Microb Ecol. 2019 Feb;77(2):471-487. doi: 10.1007/s00248-018-1218-9. Epub 2018 Jul 5.
Proteins belonging to the Gls24 superfamily are involved in survival of pathogenic Gram-positive cocci under oligotrophic conditions and other types of stress, by a still unknown molecular mechanism. In Firmicutes, this superfamily includes three different valine-rich orthologal families (Gls24A, B, C) with different potential interactive partners. Whereas the Streptococcus pneumoniae Δgls24A deletion mutant experienced a general long growth delay, the Δgls24B mutant grew as the parental strain in the semisynthetic AGCH medium but failed to grow in the complex Todd-Hewitt medium. Bovine seroalbumin (BSA) was the component responsible for this phenotype. The effect of BSA on growth was concentration-dependent and was maintained when the protein was proteolyzed but not when heat-denatured, suggesting that BSA dependence was related to oligopeptide supplementation. Global transcriptional analyses of the knockout mutant revealed catabolic derepression and induction of chaperone and oligopeptide transport genes. This mutant also showed increased sensibility to cadmium and high temperature. The Δgls24B mutant behaved as a poor colonizer in the nasopharynx of mice and showed 20-fold competence impairment. Experimental data suggest that Gls24B plays a central role as a sensor of amino acid availability and its connection to sugar catabolism. This metabolic rewiring can be compensated in vitro, at the expenses of external oligopeptide supplementation, but reduce important bacteria skills prior to efficiently address systemic virulence traits. This is an example of how metabolic factors conserved in enterococci, streptococci, and staphylococci can be essential for survival in poor oligopeptide environments prior to infection progression.
属于 Gls24 超家族的蛋白质参与了在贫营养条件下和其他类型压力下致病性革兰氏阳性球菌的存活,其分子机制尚不清楚。在厚壁菌门中,该超家族包括三个不同的富含缬氨酸的直系同源家族(Gls24A、B、C),它们具有不同的潜在相互作用伙伴。虽然肺炎链球菌Δgls24A 缺失突变体经历了普遍的生长延迟,但Δgls24B 突变体在半合成 AGCH 培养基中与亲本菌株一样生长,但在复杂的 Todd-Hewitt 培养基中无法生长。牛血清白蛋白(BSA)是导致这种表型的原因。BSA 对生长的影响具有浓度依赖性,当蛋白质被蛋白水解时保持不变,但当热变性时则不保持,这表明 BSA 的依赖性与寡肽的补充有关。敲除突变体的全转录组分析显示分解代谢的去阻遏和伴侣和寡肽转运基因的诱导。该突变体还表现出对镉和高温的敏感性增加。Δgls24B 突变体在小鼠鼻咽中的定植能力较差,其竞争能力下降了 20 倍。实验数据表明,Gls24B 作为氨基酸可用性的传感器发挥着核心作用,其与糖分解代谢的联系也是如此。这种代谢重布线可以在体外得到补偿,代价是外部寡肽的补充,但在有效解决系统毒力特性之前,会降低重要细菌的技能。这是一个例子,说明在感染进展之前,厚壁菌、链球菌和葡萄球菌中保守的代谢因素如何对贫肽环境中的生存至关重要。