Suppr超能文献

欧洲农业土地废弃决定因素的空间变异。

Spatial variation in determinants of agricultural land abandonment in Europe.

机构信息

Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany.

Geography Department, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany; Department of Statistics, University of Washington, Box 354322, Seattle, WA 98195-4322, USA.

出版信息

Sci Total Environ. 2018 Dec 10;644:95-111. doi: 10.1016/j.scitotenv.2018.06.326. Epub 2018 Jul 4.

Abstract

Agricultural abandonment is widespread and growing in many regions worldwide, often because of agricultural intensification on productive lands, conservation policies, or the spatial decoupling of agricultural production from consumption. Abandonment has major environmental and social impacts, which differ starkly depending on the geographical context, as does its potential to serve as a land reservoir for recultivation. Understanding determinants of abandonment patterns, and especially how their influence varies across broad geographic extents, is therefore important. Using a pan-European map of agricultural abandonment derived from MODIS NDVI time series between 2001 and 2012, we quantified the importance of farm management, climatic, environmental, and socio-economic variables in explaining abandonment patterns. We chose a machine learning modelling framework that accounts for spatial variation in the relationship between abandonment and its determinants. We predicted abandonment probability as well as determinant coefficients for the entire study area and summarised them for regions under selected EU support schemes. Our results highlight that agricultural abandonment was mainly explained by climate conditions suboptimal for agriculture (i.e., low/high growing degrees days). Determinants related to farm management (smaller field size, lower yields) and socio-economic conditions (high unemployment, negative migration balance) also contributed to describing agricultural abandonment patterns in Europe. Several determinants influenced abandonment in strongly non-linear ways and we found substantial spatial non-stationarity effects, although abandonment patterns were equally well-explained by predictors specified with spatially constant and varying effects. Predicted abandonment probability was similar inside and outside EU support or conservation zones, whereas observed MODIS-based abandonment was generally higher outside these zones, suggesting that schemes such as Natura 2000 or High Nature Value Farmland likely influence abandonment patterns. Our work highlights the potential value of spatial boosting for gaining insights into land-use change processes and their outcomes, which should increase the ability of such models to inform context-specific, regionalised decision making.

摘要

农业弃耕现象在世界许多地区普遍存在且呈增长趋势,其主要原因包括在生产性土地上进行农业集约化、保护政策的推行以及农业生产与消费的空间脱钩。弃耕会产生重大的环境和社会影响,其影响因地理背景而异,同时,它也有可能成为重新开垦的土地储备。因此,了解弃耕模式的决定因素,特别是了解这些因素在广阔地理范围内的影响差异,非常重要。本研究利用 2001 年至 2012 年间 MODIS NDVI 时间序列生成的泛欧农业弃耕地图,量化了农场管理、气候、环境和社会经济变量对解释弃耕模式的重要性。我们选择了一种机器学习建模框架,该框架考虑了弃耕与其决定因素之间关系的空间变化。我们预测了整个研究区域的弃耕概率和决定因素系数,并对选定的欧盟支持计划下的区域进行了总结。研究结果表明,农业弃耕主要是由农业气候条件不佳(即低/高生长度日)造成的。与农场管理(较小的地块、较低的产量)和社会经济条件(高失业率、负移民平衡)相关的决定因素也有助于描述欧洲的农业弃耕模式。一些决定因素以强烈的非线性方式影响弃耕,而且我们发现存在大量的空间非平稳性效应,尽管具有空间恒定和变化效应的预测因子同样可以很好地解释弃耕模式。预测的弃耕概率在欧盟支持或保护区域内和外都相似,而基于 MODIS 的观测弃耕率通常在这些区域外更高,这表明像 Natura 2000 或高自然价值农田这样的计划可能会影响弃耕模式。本研究工作强调了空间提升在深入了解土地利用变化过程及其结果方面的潜在价值,这将提高此类模型为特定背景、区域化决策提供信息的能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验