Department of Civil Engineering , The University of Hong Kong , Hong Kong , Hong Kong SAR , China.
School of Energy Science and Engineering , Central South University , Changsha 410083 , China.
Langmuir. 2018 Jul 31;34(30):8739-8749. doi: 10.1021/acs.langmuir.8b01181. Epub 2018 Jul 19.
Nanostructured copper sulfide synthesized with the assistance of surfactant with nanoscale particle size and high Brunauer-Emmett-Teller surface area was for the first time applied for the capture of elemental mercury (Hg) from coal combustion flue gas. The optimal operation temperature of nano-CuS for Hg adsorption is 75 °C, which indicates that injection of the sorbent between the wet flue gas desulfurization and the wet electrostatic precipitator systems is feasible. This assures that the sorbent is free of the adverse influence of nitrogen oxides. Oxygen (O) and sulfur dioxide exerted a slight influence on Hg adsorption over the nano-CuS. Water vapor was shown to moderately suppress Hg capture efficiency via competitive adsorption. The simulated adsorption capacities of nano-CuS for Hg under pure nitrogen (N), N + 4% O, and simulated flue gas reached 122.40, 112.06, and 89.43 mgHg/g nano-CuS, respectively. Compared to those of traditional commercial activated carbons and metal sulfides, the simulated adsorption capacities of Hg over the nano-CuS are at least an order of magnitude higher. Moreover, with only 5 mg loaded in a fixed-bed reactor, the Hg adsorption rate reached 11.93-13.56 μg/g min over nano-CuS. This extremely speedy rate makes nano-CuS promising for a future sorbent injection technique. The anisotropic growth of nano-CuS was confirmed by X-ray diffraction analysis and provided a fundamental aspect for nano-CuS surface reconstruction and polysulfide formation. Further X-ray photoelectron spectroscopy and Hg temperature-programmed desorption tests showed that the active polysulfide, S-S dimers, and copper-terminated sites contributed primarily to the extremely high Hg adsorption capacity and rate. With these advantages, nano-CuS appears to be a highly promising alternative to traditional sorbents for Hg capture from coal combustion flue gas.
首次使用纳米级粒径和高比表面积的表面活性剂辅助合成的纳米结构硫化铜,用于从燃煤烟气中捕获元素汞(Hg)。纳米-CuS 吸附 Hg 的最佳操作温度为 75°C,这表明在湿法烟气脱硫和湿法静电除尘器系统之间注入该吸附剂是可行的。这确保了吸附剂不受氮氧化物的不利影响。O 和 SO2 对纳米-CuS 上的 Hg 吸附有轻微影响。水蒸气通过竞争吸附适度抑制 Hg 捕集效率。在纯氮(N)、N + 4%O 和模拟烟气下,纳米-CuS 对 Hg 的模拟吸附容量分别达到 122.40、112.06 和 89.43 mgHg/g 纳米-CuS。与传统的商用活性炭和金属硫化物相比,纳米-CuS 对 Hg 的模拟吸附容量至少高一个数量级。此外,在固定床反应器中仅负载 5mg,纳米-CuS 对 Hg 的吸附速率达到 11.93-13.56μg/g min。如此极快的速率使得纳米-CuS 有望成为未来的吸附剂注入技术。X 射线衍射分析证实了纳米-CuS 的各向异性生长,为纳米-CuS 表面重构和多硫化物形成提供了基础。进一步的 X 射线光电子能谱和 Hg 程序升温脱附测试表明,活性多硫化物、S-S 二聚体和铜终止位主要有助于极高的 Hg 吸附容量和速率。纳米-CuS 具有这些优势,有望成为从燃煤烟气中捕获 Hg 的传统吸附剂的替代品。