Suppr超能文献

基于稀疏初始化最大似然期望最大化算法的荧光分子断层成像中的图像重建

Image reconstruction in fluorescence molecular tomography with sparsity-initialized maximum-likelihood expectation maximization.

作者信息

Zhu Yansong, Jha Abhinav K, Wong Dean F, Rahmim Arman

机构信息

Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA.

Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Biomed Opt Express. 2018 Jun 13;9(7):3106-3121. doi: 10.1364/BOE.9.003106. eCollection 2018 Jul 1.

Abstract

We present a reconstruction method involving maximum-likelihood expectation maximization (MLEM) to model Poisson noise as applied to fluorescence molecular tomography (FMT). MLEM is initialized with the output from a sparse reconstruction-based approach, which performs truncated singular value decomposition-based preconditioning followed by fast iterative shrinkage-thresholding algorithm (FISTA) to enforce sparsity. The motivation for this approach is that sparsity information could be accounted for within the initialization, while MLEM would accurately model Poisson noise in the FMT system. Simulation experiments show the proposed method significantly improves images qualitatively and quantitatively. The method results in over 20 times faster convergence compared to uniformly initialized MLEM and improves robustness to noise compared to pure sparse reconstruction. We also theoretically justify the ability of the proposed approach to reduce noise in the background region compared to pure sparse reconstruction. Overall, these results provide strong evidence to model Poisson noise in FMT reconstruction and for application of the proposed reconstruction framework to FMT imaging.

摘要

我们提出了一种涉及最大似然期望最大化(MLEM)的重建方法,用于对应用于荧光分子断层扫描(FMT)的泊松噪声进行建模。MLEM 以基于稀疏重建方法的输出进行初始化,该方法先进行基于截断奇异值分解的预处理,然后采用快速迭代收缩阈值算法(FISTA)来强制稀疏性。这种方法的动机在于,稀疏性信息可在初始化过程中加以考虑,而 MLEM 能够精确地对 FMT 系统中的泊松噪声进行建模。模拟实验表明,所提出的方法在定性和定量方面均能显著改善图像。与均匀初始化的 MLEM 相比,该方法的收敛速度提高了 20 多倍,并且与纯稀疏重建相比,对噪声的鲁棒性也有所提高。我们还从理论上证明了与纯稀疏重建相比,所提出的方法在背景区域降低噪声的能力。总体而言,这些结果为在 FMT 重建中对泊松噪声进行建模以及将所提出的重建框架应用于 FMT 成像提供了有力证据。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验