Suppr超能文献

基于微数据非依赖采集的高通量蛋白质组学和敏感肽段质谱鉴定。

Micro-Data-Independent Acquisition for High-Throughput Proteomics and Sensitive Peptide Mass Spectrum Identification.

机构信息

Vulcan Analytical , Birmingham , Alabama 35203 , United States.

Mass Spectrometry Research Center, Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37240 , United States.

出版信息

Anal Chem. 2018 Aug 7;90(15):8905-8911. doi: 10.1021/acs.analchem.8b01026. Epub 2018 Jul 23.

Abstract

State-of-the-art strategies for proteomics are not able to rapidly interrogate complex peptide mixtures in an untargeted manner with sensitive peptide and protein identification rates. We describe a data-independent acquisition (DIA) approach, microDIA (μDIA), that applies a novel tandem mass spectrometry (MS/MS) mass spectral deconvolution method to increase the specificity of tandem mass spectra acquired during proteomics experiments. Using the μDIA approach with a 10 min liquid chromatography gradient allowed detection of 3.1-fold more HeLa proteins than the results obtained from data-dependent acquisition (DDA) of the same samples. Additionally, we found the μDIA MS/MS deconvolution procedure is critical for resolving modified peptides with relatively small precursor mass shifts that cause the same peptide sequence in modified and unmodified forms to theoretically cofragment in the same raw MS/MS spectra. The μDIA workflow is implemented in the PROTALIZER software tool which fully automates tandem mass spectral deconvolution, queries every peptide with a library-free search algorithm against a user-defined protein database, and confidently identifies multiple peptides in a single tandem mass spectrum. We also benchmarked μDIA against DDA using a 90 min gradient analysis of HeLa and Escherichia coli peptides that were mixed in predefined quantitative ratios, and our results showed μDIA provided 24% more true positives at the same false positive rate.

摘要

目前的蛋白质组学策略无法以敏感的肽和蛋白质鉴定率快速、无目标地分析复杂的肽混合物。我们描述了一种数据非依赖性采集(DIA)方法,即 microDIA(μDIA),它采用了一种新的串联质谱(MS/MS)质谱解卷积方法,以提高在蛋白质组学实验中获得的串联质谱的特异性。使用μDIA 方法,在 10 分钟的液相色谱梯度下,可以检测到比相同样品的 DDA 结果多 3.1 倍的 HeLa 蛋白。此外,我们发现μDIA MS/MS 解卷积程序对于解析具有相对较小前体质量位移的修饰肽至关重要,这些修饰肽会导致修饰和未修饰形式的相同肽序列在理论上在相同的原始 MS/MS 谱中共同碎裂。μDIA 工作流程在 PROTALIZER 软件工具中实现,该工具可完全自动化串联质谱解卷积,使用无库搜索算法对每个肽与用户定义的蛋白质数据库进行查询,并在单个串联质谱中自信地鉴定多个肽。我们还使用 HeLa 和大肠杆菌肽的 90 分钟梯度分析对 μDIA 与 DDA 进行了基准测试,这些肽以预定义的定量比混合,我们的结果表明,在相同的假阳性率下,μDIA 提供了 24%的更多真阳性结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验