Suppr超能文献

使用重叠窗口提高数据非依赖采集的前体离子选择性。

Improving Precursor Selectivity in Data-Independent Acquisition Using Overlapping Windows.

机构信息

Department of Radiology, Stanford University, 3155 Porter Drive, Palo Alto, CA, USA.

Department of Genome Sciences, University of Washington, 3720 15th Ave. NE, Seattle, WA, USA.

出版信息

J Am Soc Mass Spectrom. 2019 Apr;30(4):669-684. doi: 10.1007/s13361-018-2122-8. Epub 2019 Jan 22.

Abstract

A major goal of proteomics research is the accurate and sensitive identification and quantification of a broad range of proteins within a sample. Data-independent acquisition (DIA) approaches that acquire MS/MS spectra independently of precursor information have been developed to overcome the reproducibility challenges of data-dependent acquisition and the limited breadth of targeted proteomics strategies. Typical DIA implementations use wide MS/MS isolation windows to acquire comprehensive fragment ion data. However, wide isolation windows produce highly chimeric spectra, limiting the achievable sensitivity and accuracy of quantification and identification. Here, we present a DIA strategy in which spectra are collected with overlapping (rather than adjacent or random) windows and then computationally demultiplexed. This approach improves precursor selectivity by nearly a factor of 2, without incurring any loss in mass range, mass resolution, chromatographic resolution, scan speed, or other key acquisition parameters. We demonstrate a 64% improvement in sensitivity and a 17% improvement in peptides detected in a 6-protein bovine mix spiked into a yeast background. To confirm the method's applicability to a realistic biological experiment, we also analyze the regulation of the proteasome in yeast grown in rapamycin and show that DIA experiments with overlapping windows can help elucidate its adaptation toward the degradation of oxidatively damaged proteins. Our integrated computational and experimental DIA strategy is compatible with any DIA-capable instrument. The computational demultiplexing algorithm required to analyze the data has been made available as part of the open-source proteomics software tools Skyline and msconvert (Proteowizard), making it easy to apply as part of standard proteomics workflows. Graphical Abstract.

摘要

蛋白质组学研究的一个主要目标是准确、灵敏地鉴定和定量样品中广泛的蛋白质。为了克服数据依赖型采集的重现性挑战和靶向蛋白质组学策略的有限广度,已经开发了不依赖于前体信息获取 MS/MS 谱的非依赖性数据获取 (DIA) 方法。典型的 DIA 实现使用宽 MS/MS 隔离窗口来获取全面的片段离子数据。然而,宽的隔离窗口会产生高度嵌合的光谱,限制了定量和鉴定的可实现灵敏度和准确性。在这里,我们提出了一种 DIA 策略,其中使用重叠(而不是相邻或随机)窗口收集光谱,然后进行计算解复用。这种方法通过将近 2 倍的方式提高了前体的选择性,而不会损失质量范围、质量分辨率、色谱分辨率、扫描速度或其他关键采集参数。我们在牛混合蛋白中添加到酵母背景中进行的 6 种蛋白质混合中,证明了该方法的灵敏度提高了 64%,检测到的肽增加了 17%。为了确认该方法适用于实际的生物学实验,我们还分析了在雷帕霉素中生长的酵母中蛋白酶体的调节,并表明重叠窗口的 DIA 实验有助于阐明其对氧化损伤蛋白质的降解的适应性。我们的集成计算和实验 DIA 策略与任何具有 DIA 能力的仪器兼容。用于分析数据的计算解复用算法已作为开源蛋白质组学软件工具 Skyline 和 msconvert (Proteowizard) 的一部分提供,使其易于作为标准蛋白质组学工作流程的一部分应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0651/6445824/06292c761c6e/13361_2018_2122_Figa_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验