Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261.
Department of Chemistry, Tsinghua University, Beijing 100084, China.
Proc Natl Acad Sci U S A. 2018 Jul 24;115(30):7700-7705. doi: 10.1073/pnas.1800262115. Epub 2018 Jul 9.
Gold (Au) catalysts exhibit a significant size effect, but its origin has been puzzling for a long time. It is generally believed that supported Au clusters are more or less rigid in working condition, which inevitably leads to the general speculation that the active sites are immobile. Here, by using atomic resolution in situ environmental transmission electron microscopy, we report size-dependent structure dynamics of single Au nanoparticles on ceria (CeO) in CO oxidation reaction condition at room temperature. While large Au nanoparticles remain rigid in the catalytic working condition, ultrasmall Au clusters lose their intrinsic structures and become disordered, featuring vigorous structural rearrangements and formation of dynamic low-coordinated atoms on surface. Ab initio molecular-dynamics simulations reveal that the interaction between ultrasmall Au cluster and CO molecules leads to the dynamic structural responses, demonstrating that the shape of the catalytic particle under the working condition may totally differ from the shape under the static condition. The present observation provides insight on the origin of superior catalytic properties of ultrasmall gold clusters.
金(Au)催化剂表现出显著的尺寸效应,但长期以来其起源一直令人困惑。一般认为,负载的 Au 簇在工作条件下或多或少是刚性的,这不可避免地导致了普遍的猜测,即活性位是不可移动的。在这里,我们通过使用原子分辨率的原位环境透射电子显微镜,在室温下的 CO 氧化反应条件下,报道了单 Au 纳米颗粒在氧化铈(CeO)上的尺寸依赖性结构动力学。虽然大的 Au 纳米颗粒在催化工作条件下保持刚性,但超小的 Au 团簇失去了其固有结构并变得无序,表面表现出剧烈的结构重排和动态低配位原子的形成。从头算分子动力学模拟表明,超小 Au 团簇与 CO 分子之间的相互作用导致了动态结构响应,表明在工作条件下催化颗粒的形状可能与静态条件下的形状完全不同。本研究提供了对超小金团簇具有优越催化性能的起源的深入了解。