文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

动态 3'-脱氧-3'-[F]氟代胸苷 ([F]FLT) PET 采集需要多长时间才能进行稳健的乳腺癌动力学分析?

How Long of a Dynamic 3'-Deoxy-3'-[F]fluorothymidine ([F]FLT) PET Acquisition Is Needed for Robust Kinetic Analysis in Breast Cancer?

机构信息

Wright Center of Innovation in Biomedical Imaging, Department of Radiology, The Ohio State University Wexner Medical Center, 395 W. 12th Avenue, Room 430, Columbus, OH, 43210-1228, USA.

Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.

出版信息

Mol Imaging Biol. 2019 Apr;21(2):382-390. doi: 10.1007/s11307-018-1231-x.


DOI:10.1007/s11307-018-1231-x
PMID:29987617
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7201384/
Abstract

PURPOSE: To quantitatively evaluate the minimally required scanning time of 3'-deoxy-3'-[F]fluorothymidine ([F]FLT) positron emission tomography (PET) dynamic acquisition for accurate kinetic assessment of the proliferation in breast cancer tumors. PROCEDURES: Within a therapeutic intervention trial, 26 breast tumors of 8 breast cancer patients were analyzed from 30-min dynamic [F]FLT-PET acquisitions. PET/CT was acquired on a Gemini TF 64 system (Philips Healthcare) and reconstructed into 26 frames (8 × 15 s, 6 × 30 s, 5 × 1 min, 5 × 2 min, and 2 × 5 min). Maximum activity concentrations (Bq/ml) of volume of interests over tumors and plasma in descending aorta were obtained over time frames. Kinetic parameters were estimated using in-house developed software with the two-tissue three-compartment irreversible model (2TCM) (K, k, k, and K; k = 0) and Patlak model (K) based on different acquisition durations (T) (10, 12, 14, 16, 20, 25, and 30 min, separately). Different linear regression onset time (T) points (1, 2, 3, 4, and 5 min) were applied in Patlak analysis. K of the 30-min data set was taken as the gold standard for comparison. Pearson product-moment correlation coefficient (R) of 0.9 was chosen as a limit for the correlation. RESULTS: The correlation of kinetic parameters between the gold standard and the abbreviated dynamic data series increased with longer T from 10 to 30 min. k and k using 2TCM and K using Patlak model revealed poor correlations for dynamic PET with T ≤ 14 min (k: R = 0.84, 0.85, 0.86; k: R = 0.67, 0.67, 0.67; K: R = 0.72, 0.78, 0.87 at T = 10, 12, and 14 min, respectively). Excellent correlations were shown for all kinetic parameters when T ≥ 16 min regardless of the kinetic model and T value (R > 0.9). CONCLUSIONS: This study indicates that a 16-min dynamic PET acquisition appears to be sufficient to provide accurate [F]FLT kinetics to quantitatively assess the proliferation in breast cancer lesions.

摘要

目的:定量评估 3'-脱氧-3'-[F]氟代胸苷([F]FLT)正电子发射断层扫描(PET)动态采集的最小扫描时间,以准确评估乳腺癌肿瘤的增殖情况。

方法:在一项治疗干预试验中,对 8 名乳腺癌患者的 26 个乳腺癌肿瘤进行了分析,这些肿瘤来自于 30 分钟的动态[F]FLT-PET 采集。PET/CT 在 Gemini TF 64 系统(飞利浦医疗保健公司)上采集,并重建为 26 个帧(8×15s、6×30s、5×1min、5×2min 和 2×5min)。通过时间帧获得肿瘤和降主动脉血浆中感兴趣区域的最大放射性浓度(Bq/ml)。使用内部开发的软件,基于不同的采集时间(T)(分别为 10、12、14、16、20、25 和 30 分钟),使用双组织三室不可逆模型(2TCM)(K、k、k 和 K;k=0)和 Patlak 模型(K)估算动力学参数。在 Patlak 分析中,应用了不同的线性回归起始时间(T)点(1、2、3、4 和 5 分钟)。将 30 分钟数据集的 K 作为比较的金标准。选择 Pearson 乘积矩相关系数(R)为 0.9 作为相关的限制。

结果:金标准与缩短的动态数据序列之间的动力学参数相关性随着 T 从 10 分钟增加到 30 分钟而增加。使用 2TCM 的 k 和 k 以及 Patlak 模型的 K 在 T≤14 分钟的动态 PET 中显示出较差的相关性(k:R=0.84、0.85、0.86;k:R=0.67、0.67、0.67;K:R=0.72、0.78、0.87 在 T=10、12 和 14 分钟时)。当 T≥16 分钟时,无论动力学模型和 T 值如何,所有动力学参数均显示出极好的相关性(R>0.9)。

结论:本研究表明,16 分钟的动态 PET 采集似乎足以提供准确的[F]FLT 动力学信息,以定量评估乳腺癌病变的增殖情况。

相似文献

[1]
How Long of a Dynamic 3'-Deoxy-3'-[F]fluorothymidine ([F]FLT) PET Acquisition Is Needed for Robust Kinetic Analysis in Breast Cancer?

Mol Imaging Biol. 2019-4

[2]
[¹⁸F]fluorothymidine-positron emission tomography in patients with locally advanced breast cancer under bevacizumab treatment: usefulness of different quantitative methods of tumor proliferation.

Rev Esp Med Nucl Imagen Mol. 2014

[3]
Glioma proliferation as assessed by 3'-fluoro-3'-deoxy-L-thymidine positron emission tomography in patients with newly diagnosed high-grade glioma.

Clin Cancer Res. 2008-4-1

[4]
Kinetic modeling of 3'-deoxy-3'-18F-fluorothymidine for quantitative cell proliferation imaging in subcutaneous tumor models in mice.

J Nucl Med. 2008-12

[5]
In vivo validation of 3'deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT) as a proliferation imaging tracer in humans: correlation of [(18)F]FLT uptake by positron emission tomography with Ki-67 immunohistochemistry and flow cytometry in human lung tumors.

Clin Cancer Res. 2002-11

[6]
Feasibility of using abbreviated scan protocols with population-based input functions for accurate kinetic modeling of [F]-FDG datasets from a long axial FOV PET scanner.

Eur J Nucl Med Mol Imaging. 2023-1

[7]
Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG.

J Nucl Med. 2005-6

[8]
Quantification of cellular proliferation in tumor and normal tissues of patients with breast cancer by [18F]fluorothymidine-positron emission tomography imaging: evaluation of analytical methods.

Cancer Res. 2005-11-1

[9]
Dynamic small-animal PET imaging of tumor proliferation with 3'-deoxy-3'-18F-fluorothymidine in a genetically engineered mouse model of high-grade gliomas.

J Nucl Med. 2008-3

[10]
A Phase II Study of 3'-Deoxy-3'-18F-Fluorothymidine PET in the Assessment of Early Response of Breast Cancer to Neoadjuvant Chemotherapy: Results from ACRIN 6688.

J Nucl Med. 2015-11

引用本文的文献

[1]
Exploring the role of tumor to background parenchymal ratio of the [18F]FLT PET/CT measures in determining response to neoadjuvant chemotherapy in breast cancer: a multicenter study.

BMC Cancer. 2025-7-3

[2]
Technical note: Partitioning of gated single photon emission computed tomography raw data for protocols optimization.

J Appl Clin Med Phys. 2022-3

[3]
Dual time point [F]FLT-PET for differentiating proliferating tissues vs non-proliferating tissues.

EJNMMI Res. 2019-12-12

本文引用的文献

[1]
Parametric Method Performance for Dynamic 3'-Deoxy-3'-F-Fluorothymidine PET/CT in Epidermal Growth Factor Receptor-Mutated Non-Small Cell Lung Carcinoma Patients Before and During Therapy.

J Nucl Med. 2016-11-10

[2]
A systematic review on [(18)F]FLT-PET uptake as a measure of treatment response in cancer patients.

Eur J Cancer. 2016-3

[3]
Quantification of 18F-Fluoride Kinetics: Evaluation of Simplified Methods.

J Nucl Med. 2014-5-27

[4]
Parametric imaging of ¹⁸F-fluoro-3-deoxy-3-L-fluorothymidine PET data to investigate tumour heterogeneity.

Eur J Nucl Med Mol Imaging. 2014-9

[5]
Recurrent and metastatic breast cancer PET, PET/CT, PET/MRI: FDG and new biomarkers.

Q J Nucl Med Mol Imaging. 2013-12

[6]
Molecular imaging for monitoring treatment response in breast cancer patients.

Eur J Pharmacol. 2013-10-5

[7]
Comparative functional evaluation of immunocompetent mouse breast cancer models established from PyMT-tumors using small animal PET with [(18)F]FDG and [(18)F]FLT.

Am J Nucl Med Mol Imaging. 2012

[8]
Quantitative approaches of dynamic FDG-PET and PET/CT studies (dPET/CT) for the evaluation of oncological patients.

Cancer Imaging. 2012-9-28

[9]
Impact of iterative reconstruction on CNR and SNR in dynamic myocardial perfusion imaging in an animal model.

Eur Radiol. 2012-7-3

[10]
Correlation between Ki-67 immunohistochemistry and 18F-fluorothymidine uptake in patients with cancer: A systematic review and meta-analysis.

Eur J Cancer. 2012-5-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索