Suppr超能文献

通过离体标记法测定大鼠脑中oripavines对μ、δ和κ位点的体内阿片受体结合情况。

In vivo opiate receptor binding of oripavines to mu, delta and kappa sites in rat brain as determined by an ex vivo labeling method.

作者信息

Richards M L, Sadée W

出版信息

Eur J Pharmacol. 1985 Aug 27;114(3):343-53. doi: 10.1016/0014-2999(85)90379-6.

Abstract

The relative in vivo receptor affinities of three oripavine drugs given subcutaneously were determined at the mu, delta and kappa type of opiate binding sites in rat brain. The oripavines include the agonist etorphine, the antagonist diprenorphine and the mixed agonist-antagonist buprenorphine. With the use of mu, delta and kappa specific labeling conditions in brain homogenates immediately after sacrifice (ex vivo labeling), the method relies on the assay of those receptor sites that remain unbound in vivo. Because of the slow receptor binding kinetics of the oripavines, little or no dissociation of the in vivo ligand occurs during the ex vivo labeling period. All three drugs displayed lower affinity in vivo at the delta sites relative to mu sites, whereas the kappa affinities were highly variable. Etorphine displayed considerable mu selectivity, while burpenorphine's affinity at the mu and kappa sites was similar. The apparent in vivo binding affinities obtained from the ex vivo labeling approach are compatible with previous results where tracers were applied in vivo. The dramatic differences of the in vivo and in vitro opiate receptor binding properties of the oripavines demonstrate the need for in vivo receptor binding parameters in the analysis of the function of individual receptor types.

摘要

皮下注射三种阿片碱药物后,测定了其在大鼠脑内μ、δ和κ型阿片类结合位点的相对体内受体亲和力。这些阿片碱包括激动剂埃托啡、拮抗剂二丙诺啡和混合激动剂 - 拮抗剂丁丙诺啡。在处死后立即使用脑匀浆中μ、δ和κ特异性标记条件(离体标记),该方法依赖于对体内未结合的那些受体位点的测定。由于阿片碱的受体结合动力学缓慢,在离体标记期间,体内配体很少或没有解离。相对于μ位点,所有三种药物在δ位点的体内亲和力较低,而κ亲和力变化很大。埃托啡表现出相当大的μ选择性,而丁丙诺啡在μ和κ位点的亲和力相似。从离体标记方法获得的表观体内结合亲和力与先前在体内应用示踪剂的结果一致。阿片碱体内和体外阿片受体结合特性的巨大差异表明,在分析个体受体类型的功能时需要体内受体结合参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验