Suppr超能文献

融合部分相机信号进行非接触式心率变异性测量。

Fusing Partial Camera Signals for Noncontact Pulse Rate Variability Measurement.

出版信息

IEEE Trans Biomed Eng. 2018 Aug;65(8):1725-1739. doi: 10.1109/TBME.2017.2771518. Epub 2017 Nov 9.

Abstract

Remote camera-based measurement of physiology has great potential for healthcare and affective computing. Recent advances in computer vision and signal processing have enabled photoplethysmography (PPG) measurement using commercially available cameras. However, there remain challenges in recovering accurate noncontact PPG measurements in the presence of rigid head motion. When a subject is moving, their face may be turned away from one camera, be obscured by an object, or move out of the frame resulting in missing observations. As the calculation of pulse rate variability (PRV) requires analysis over a time window of several minutes, the effect of missing observations on such features is deleterious. We present an approach for fusing partial color-channel signals from an array of cameras that enable physiology measurements to be made from moving subjects, even if they leave the frame of one or more cameras, which would not otherwise be possible with only a single camera. We systematically test our method on subjects ( N=25) using a set of six, 5-min tasks (each repeated twice) involving different levels of head motion. This results in validation across 25 h of measurement. We evaluate pulse rate and PRV parameter estimation including statistical, geometric, and frequency-based measures. The median absolute error in pulse rate measurements was 0.57 beats-per-minute (BPM). In all but two tasks with the greatest motion, the median error was within 0.4 BPM of that from a contact PPG device. PRV estimates were significantly improved using our proposed approach compared to an alternative not designed to handle missing values and multiple camera signals; the error was reduced by over 50%. Without our proposed method, errors in pulse rate would be very high, and estimation of PRV parameters would not be feasible due to significant data loss.

摘要

基于远程摄像头的生理测量在医疗保健和情感计算方面具有巨大的潜力。计算机视觉和信号处理的最新进展使得使用商用摄像头进行光电容积脉搏波(PPG)测量成为可能。然而,在存在刚性头部运动的情况下,仍然存在恢复准确非接触式 PPG 测量的挑战。当主体移动时,他们的脸可能会从一个摄像头转开,被物体遮挡,或者移出框架,导致观测数据丢失。由于脉搏率变异性(PRV)的计算需要在几分钟的时间窗口内进行分析,因此缺失观测对这些特征的影响是有害的。我们提出了一种从移动对象进行生理测量的方法,该方法融合了来自摄像头阵列的部分颜色通道信号,即使对象离开一个或多个摄像头的框架,否则仅使用单个摄像头是不可能的。我们使用一套六个 5 分钟的任务(每个任务重复两次),涉及不同程度的头部运动,对 25 名对象进行了系统测试。这导致了 25 小时的测量验证。我们评估了脉搏率和 PRV 参数估计,包括统计、几何和基于频率的度量。脉搏率测量的中值绝对误差为 0.57 次/分钟(BPM)。在除了两个头部运动最大的任务之外,所有任务的中值误差都在接触式 PPG 设备的 0.4 BPM 以内。与不设计用于处理缺失值和多个摄像头信号的替代方法相比,使用我们提出的方法可以显著提高 PRV 估计值;误差减少了 50%以上。如果没有我们提出的方法,脉搏率的误差将非常高,并且由于数据丢失严重,PRV 参数的估计将不可行。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验