Suppr超能文献

lTV:一种用于脉冲噪声图像恢复的稀疏优化方法。

lTV: A Sparse Optimization Method for Impulse Noise Image Restoration.

作者信息

Yuan Ganzhao, Ghanem Bernard

出版信息

IEEE Trans Pattern Anal Mach Intell. 2019 Feb;41(2):352-364. doi: 10.1109/TPAMI.2017.2783936. Epub 2017 Dec 15.

Abstract

Total Variation (TV) is an effective and popular prior model in the field of regularization-based image processing. This paper focuses on total variation for removing impulse noise in image restoration. This type of noise frequently arises in data acquisition and transmission due to many reasons, e.g., a faulty sensor or analog-to-digital converter errors. Removing this noise is an important task in image restoration. State-of-the-art methods such as Adaptive Outlier Pursuit(AOP) [1] , which is based on TV with l-norm data fidelity, only give sub-optimal performance. In this paper, we propose a new sparse optimization method, called lTV-PADMM, which solves the TV-based restoration problem with l-norm data fidelity. To effectively deal with the resulting non-convex non-smooth optimization problem, we first reformulate it as an equivalent biconvex Mathematical Program with Equilibrium Constraints (MPEC), and then solve it using a proximal Alternating Direction Method of Multipliers (PADMM). Our lTV-PADMM method finds a desirable solution to the original l-norm optimization problem and is proven to be convergent under mild conditions. We apply lTV-PADMM to the problems of image denoising and deblurring in the presence of impulse noise. Our extensive experiments demonstrate that lTV-PADMM outperforms state-of-the-art image restoration methods.

摘要

全变差(TV)是基于正则化的图像处理领域中一种有效且流行的先验模型。本文聚焦于全变差用于去除图像恢复中的脉冲噪声。由于多种原因,如图像传感器故障或模数转换器误差,这种类型的噪声在数据采集和传输过程中经常出现。去除这种噪声是图像恢复中的一项重要任务。诸如基于具有 l -范数数据保真度的 TV 的自适应离群点追踪(AOP)[1] 等现有方法,仅给出次优性能。在本文中,我们提出一种新的稀疏优化方法,称为 lTV - PADMM,它解决了具有 l -范数数据保真度的基于 TV 的恢复问题。为有效处理由此产生的非凸非光滑优化问题,我们首先将其重新表述为一个具有平衡约束的等价双凸数学规划(MPEC),然后使用近端交替方向乘子法(PADMM)求解。我们的 lTV - PADMM 方法找到了原 l -范数优化问题的一个理想解,并在温和条件下被证明是收敛的。我们将 lTV - PADMM 应用于存在脉冲噪声时的图像去噪和去模糊问题。我们广泛的实验表明,lTV - PADMM 优于现有最先进的图像恢复方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验