Suppr超能文献

基于神经网络的自适应反步控制及其在航天器姿态调节中的应用

Neural-Network-Based Adaptive Backstepping Control With Application to Spacecraft Attitude Regulation.

作者信息

Cao Xibin, Shi Peng, Li Zhuoshi, Liu Ming

出版信息

IEEE Trans Neural Netw Learn Syst. 2018 Sep;29(9):4303-4313. doi: 10.1109/TNNLS.2017.2756993. Epub 2017 Nov 1.

Abstract

This paper investigates the neural-network-based adaptive control problem for a class of continuous-time nonlinear systems with actuator faults and external disturbances. The model uncertainties in the system are not required to satisfy the norm-bounded assumption, and the exact information for components faults and external disturbance is totally unknown, which represents more general cases in practical systems. An indirect adaptive backstepping control strategy is proposed to cope with the stabilization problem, where the unknown nonlinearity is approximated by the adaptive neural-network scheme, and the loss of effectiveness of actuators faults and the norm bounds of exogenous disturbances are estimated via designed online adaptive updating laws. The developed adaptive backstepping control law can ensure the asymptotic stability of the fault closed-loop system despite of unknown nonlinear function, actuator faults, and disturbances. Finally, an application example based on spacecraft attitude regulation is provided to demonstrate the effectiveness and the potential of the developed new neural adaptive control approach.

摘要

本文研究了一类具有执行器故障和外部干扰的连续时间非线性系统基于神经网络的自适应控制问题。系统中的模型不确定性无需满足范数有界假设,且部件故障和外部干扰的精确信息完全未知,这代表了实际系统中更一般的情况。提出了一种间接自适应反步控制策略来解决稳定问题,其中未知非线性通过自适应神经网络方案进行逼近,执行器故障的有效性损失和外部干扰的范数界通过设计的在线自适应更新律进行估计。所提出的自适应反步控制律能够确保故障闭环系统的渐近稳定性,尽管存在未知非线性函数、执行器故障和干扰。最后,给出了一个基于航天器姿态调节的应用实例,以证明所提出的新型神经自适应控制方法的有效性和潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验