IEEE Trans Cybern. 2018 Nov;48(11):3184-3196. doi: 10.1109/TCYB.2017.2761798. Epub 2017 Oct 30.
Positive definite (PD) kernels are an important tool in machine learning that enable efficient solutions to otherwise difficult or intractable problems by implicitly linearizing the problem geometry. In this paper, we develop a set-theoretic interpretation of the earth mover's distance (EMD) and propose earth mover's intersection (EMI), a PD analog to EMD for sets of different sizes. We provide conditions under which EMD or certain approximations to EMD are negative definite. We also present a PD-preserving transformation that can be applied to any kernel and can also be used to derive PD EMD-based kernels and show that the Jaccard index is simply the result of this transformation. Finally, we evaluate kernels based on EMI and the proposed transformation versus EMD in various computer vision tasks and show that EMD is generally inferior even with indefinite kernel techniques.
正定核(PD)是机器学习中的一个重要工具,它通过隐式线性化问题几何结构,使得原本困难或棘手的问题能够得到有效解决。在本文中,我们提出了一种集合论解释,将 earth mover's distance (EMD) 定义为集合之间的距离,并进一步提出了 earth mover's intersection (EMI),作为 EMD 在不同大小集合之间的 PD 模拟。我们给出了 EMD 或 EMD 的某些近似值为负定的条件。我们还提出了一种 PD 保持变换,可以应用于任何核函数,并可用于推导基于 EMD 的 PD 核函数,同时证明了杰卡德指数只是这种变换的结果。最后,我们在各种计算机视觉任务中评估了基于 EMI 和所提出的变换的核函数与 EMD 的性能,结果表明,即使使用不定核技术,EMD 的性能通常也较差。