IEEE Trans Cybern. 2019 Jan;49(1):211-220. doi: 10.1109/TCYB.2017.2771387. Epub 2017 Nov 20.
This paper is focused on an innovative fuzzy cognitive maps extension called fuzzy grey cognitive maps (FGCMs). FGCMs are a mixture of fuzzy cognitive maps and grey systems theory. These have become a useful framework for facing problems with high uncertainty, under discrete small and incomplete datasets. This paper deals with the problem of uncertainty propagation in FGCM dynamics with Hebbian learning. In addition, this paper applies differential Hebbian learning (DHL) and balanced DHL to FGCMs for the first time. We analyze the uncertainty propagation in eight different scenarios in a classical chemical control problem. The results give insight into the propagation of the uncertainty or greyness in the iterations of the FGCMs. The results show that the nonlinear Hebbian learning is the choice with less uncertainty in steady final grey states for Hebbian learning algorithms.
本文专注于一种创新的模糊认知图扩展,称为模糊灰色认知图(FGCM)。FGCM 是模糊认知图和灰色系统理论的混合体。它们已成为应对具有高度不确定性、离散小且不完整数据集的问题的有用框架。本文研究了具有海伯学习的 FGCM 动力学中的不确定性传播问题。此外,本文首次将微分海伯学习(DHL)和平衡 DHL 应用于 FGCM。我们在一个经典的化学控制问题中分析了八个不同场景中的不确定性传播。结果深入了解了 FGCM 迭代中不确定性或灰色的传播。结果表明,对于海伯学习算法,非线性海伯学习是在稳态最终灰色状态下不确定性较小的选择。