Suppr超能文献

基于类 Hebbian 学习算法的模糊灰色认知图中的不确定性传播。

Uncertainty Propagation in Fuzzy Grey Cognitive Maps With Hebbian-Like Learning Algorithms.

出版信息

IEEE Trans Cybern. 2019 Jan;49(1):211-220. doi: 10.1109/TCYB.2017.2771387. Epub 2017 Nov 20.

Abstract

This paper is focused on an innovative fuzzy cognitive maps extension called fuzzy grey cognitive maps (FGCMs). FGCMs are a mixture of fuzzy cognitive maps and grey systems theory. These have become a useful framework for facing problems with high uncertainty, under discrete small and incomplete datasets. This paper deals with the problem of uncertainty propagation in FGCM dynamics with Hebbian learning. In addition, this paper applies differential Hebbian learning (DHL) and balanced DHL to FGCMs for the first time. We analyze the uncertainty propagation in eight different scenarios in a classical chemical control problem. The results give insight into the propagation of the uncertainty or greyness in the iterations of the FGCMs. The results show that the nonlinear Hebbian learning is the choice with less uncertainty in steady final grey states for Hebbian learning algorithms.

摘要

本文专注于一种创新的模糊认知图扩展,称为模糊灰色认知图(FGCM)。FGCM 是模糊认知图和灰色系统理论的混合体。它们已成为应对具有高度不确定性、离散小且不完整数据集的问题的有用框架。本文研究了具有海伯学习的 FGCM 动力学中的不确定性传播问题。此外,本文首次将微分海伯学习(DHL)和平衡 DHL 应用于 FGCM。我们在一个经典的化学控制问题中分析了八个不同场景中的不确定性传播。结果深入了解了 FGCM 迭代中不确定性或灰色的传播。结果表明,对于海伯学习算法,非线性海伯学习是在稳态最终灰色状态下不确定性较小的选择。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验