IEEE J Biomed Health Inform. 2018 Sep;22(5):1540-1551. doi: 10.1109/JBHI.2017.2770214. Epub 2017 Nov 7.
An augmented reality (AR) technique has recently gained its popularity in minimally invasive surgery. Tracking is a crucial step to achieve precise AR. Besides optical tracking in traditional medical AR, visual tracking attracts a lot of attention due to its generality. Moreover, when the target organ's 3-D model can be obtained from preoperative images and under the model rigidity assumption, tracking is then converted into a problem of computing the six-degree-of-freedom pose of the 3-D model. In this paper, we introduce a robust tracking algorithm in our endoscopic AR system, where we combine the benefits of both region and dense cues in a unified framework. Each kind of cues alone may not be adequate for tracking in endoscopic surgery. However, they have complementary characteristics, with region cues being more robust to motion blur and fast motion, and dense cues being more accurate when motion is not large. We also propose an appearance model adaption method and an occlusion processing method to effectively handle occlusions. Experiments on both synthetic dataset and simulated surgical environment show the effectiveness and robustness of our proposed method. This work presents a novel tracking strategy in medical AR applications.
一种增强现实(AR)技术最近在微创手术中得到了广泛应用。跟踪是实现精确 AR 的关键步骤。除了传统医学 AR 中的光学跟踪外,由于其通用性,视觉跟踪也引起了很多关注。此外,当目标器官的 3-D 模型可以从术前图像获得并且在模型刚性假设下,跟踪就转化为计算 3-D 模型的六自由度姿态的问题。在本文中,我们在我们的内窥镜 AR 系统中引入了一种强大的跟踪算法,其中我们将区域和密集线索的优点结合在一个统一的框架中。单独使用任何一种线索可能不足以进行内窥镜手术的跟踪。然而,它们具有互补的特点,区域线索对于运动模糊和快速运动更稳健,而密集线索在运动不大时更准确。我们还提出了一种外观模型自适应方法和一种遮挡处理方法,以有效地处理遮挡。在合成数据集和模拟手术环境上的实验表明了我们提出的方法的有效性和鲁棒性。这项工作提出了一种在医学 AR 应用中的新的跟踪策略。