Suppr超能文献

基于 SLAM 的单目微创手术中密集表面重建及其在增强现实中的应用。

SLAM-based dense surface reconstruction in monocular Minimally Invasive Surgery and its application to Augmented Reality.

机构信息

Bournemouth University, UK.

University of Chester, UK.

出版信息

Comput Methods Programs Biomed. 2018 May;158:135-146. doi: 10.1016/j.cmpb.2018.02.006. Epub 2018 Feb 8.

Abstract

BACKGROUND AND OBJECTIVE

While Minimally Invasive Surgery (MIS) offers considerable benefits to patients, it also imposes big challenges on a surgeon's performance due to well-known issues and restrictions associated with the field of view (FOV), hand-eye misalignment and disorientation, as well as the lack of stereoscopic depth perception in monocular endoscopy. Augmented Reality (AR) technology can help to overcome these limitations by augmenting the real scene with annotations, labels, tumour measurements or even a 3D reconstruction of anatomy structures at the target surgical locations. However, previous research attempts of using AR technology in monocular MIS surgical scenes have been mainly focused on the information overlay without addressing correct spatial calibrations, which could lead to incorrect localization of annotations and labels, and inaccurate depth cues and tumour measurements. In this paper, we present a novel intra-operative dense surface reconstruction framework that is capable of providing geometry information from only monocular MIS videos for geometry-aware AR applications such as site measurements and depth cues. We address a number of compelling issues in augmenting a scene for a monocular MIS environment, such as drifting and inaccurate planar mapping.

METHODS

A state-of-the-art Simultaneous Localization And Mapping (SLAM) algorithm used in robotics has been extended to deal with monocular MIS surgical scenes for reliable endoscopic camera tracking and salient point mapping. A robust global 3D surface reconstruction framework has been developed for building a dense surface using only unorganized sparse point clouds extracted from the SLAM. The 3D surface reconstruction framework employs the Moving Least Squares (MLS) smoothing algorithm and the Poisson surface reconstruction framework for real time processing of the point clouds data set. Finally, the 3D geometric information of the surgical scene allows better understanding and accurate placement AR augmentations based on a robust 3D calibration.

RESULTS

We demonstrate the clinical relevance of our proposed system through two examples: (a) measurement of the surface; (b) depth cues in monocular endoscopy. The performance and accuracy evaluations of the proposed framework consist of two steps. First, we have created a computer-generated endoscopy simulation video to quantify the accuracy of the camera tracking by comparing the results of the video camera tracking with the recorded ground-truth camera trajectories. The accuracy of the surface reconstruction is assessed by evaluating the Root Mean Square Distance (RMSD) of surface vertices of the reconstructed mesh with that of the ground truth 3D models. An error of 1.24 mm for the camera trajectories has been obtained and the RMSD for surface reconstruction is 2.54 mm, which compare favourably with previous approaches. Second, in vivo laparoscopic videos are used to examine the quality of accurate AR based annotation and measurement, and the creation of depth cues. These results show the potential promise of our geometry-aware AR technology to be used in MIS surgical scenes.

CONCLUSIONS

The results show that the new framework is robust and accurate in dealing with challenging situations such as the rapid endoscopy camera movements in monocular MIS scenes. Both camera tracking and surface reconstruction based on a sparse point cloud are effective and operated in real-time. This demonstrates the potential of our algorithm for accurate AR localization and depth augmentation with geometric cues and correct surface measurements in MIS with monocular endoscopes.

摘要

背景与目的

微创外科 (MIS) 虽然为患者带来了巨大的益处,但由于视野 (FOV)、手眼对准和定向、以及单目内窥镜缺乏立体深度感知等已知问题和限制,也对外科医生的手术技能提出了巨大挑战。增强现实 (AR) 技术可以通过在真实场景上叠加注释、标签、肿瘤测量值甚至目标手术部位的解剖结构的三维重建,来帮助克服这些限制。然而,之前在单目 MIS 手术场景中使用 AR 技术的研究尝试主要集中在信息叠加上,而没有解决正确的空间校准问题,这可能导致注释和标签的位置不正确,深度提示和肿瘤测量不准确。在本文中,我们提出了一种新的术中密集表面重建框架,该框架能够仅从单目 MIS 视频中提供几何信息,用于基于几何的 AR 应用,例如部位测量和深度提示。我们解决了在为单目 MIS 环境增强场景时遇到的一些紧迫问题,例如漂移和不准确的平面映射。

方法

机器人中使用的先进的同时定位和地图构建 (SLAM) 算法已被扩展用于处理单目 MIS 手术场景,以实现可靠的内窥镜相机跟踪和显著点映射。我们开发了一个稳健的全局三维表面重建框架,仅使用从 SLAM 中提取的非组织稀疏点云来构建密集表面。三维表面重建框架采用移动最小二乘 (MLS) 平滑算法和泊松表面重建框架,用于实时处理点云数据集。最后,手术场景的三维几何信息允许基于稳健的三维校准更好地理解和准确放置 AR 增强。

结果

我们通过两个示例展示了我们提出的系统的临床相关性:(a) 表面测量;(b) 单目内窥镜中的深度提示。该框架的性能和准确性评估包括两个步骤。首先,我们创建了一个计算机生成的内窥镜模拟视频,通过将视频摄像机跟踪的结果与记录的地面实况摄像机轨迹进行比较,来量化摄像机跟踪的准确性。通过评估重建网格的顶点与地面真实三维模型的均方根距离 (RMSD) 来评估表面重建的准确性。我们得到了摄像机轨迹的 1.24 毫米的误差,并且表面重建的 RMSD 为 2.54 毫米,与之前的方法相比表现良好。其次,使用体内腹腔镜视频检查基于准确 AR 的注释和测量的质量,并创建深度提示。这些结果表明,我们的基于几何的 AR 技术具有在单目内窥镜 MIS 手术场景中进行准确 AR 定位和深度增强的潜力。

结论

结果表明,新框架在处理单目 MIS 场景中快速内窥镜摄像机运动等具有挑战性的情况时具有稳健性和准确性。基于稀疏点云的摄像机跟踪和表面重建都是有效的,并且可以实时运行。这证明了我们的算法在使用单目内窥镜进行 MIS 手术时,具有精确的 AR 定位和深度增强以及正确的表面测量的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验