Suppr超能文献

通过跨视图搜索进行多标签预测。

Multilabel Prediction via Cross-View Search.

作者信息

Shen Xiaobo, Liu Weiwei, Tsang Ivor W, Sun Quan-Sen, Ong Yew-Soon

出版信息

IEEE Trans Neural Netw Learn Syst. 2018 Sep;29(9):4324-4338. doi: 10.1109/TNNLS.2017.2763967. Epub 2017 Nov 7.

Abstract

Embedding methods have shown promising performance in multilabel prediction, as they are able to discover the label dependence. However, most methods ignore the correlations between the input and output, such that their learned embeddings are not well aligned, which leads to degradation in prediction performance. This paper presents a formulation for multilabel learning, from the perspective of cross-view learning, that explores the correlations between the input and the output. The proposed method, called Co-Embedding (CoE), jointly learns a semantic common subspace and view-specific mappings within one framework. The semantic similarity structure among the embeddings is further preserved, ensuring that close embeddings share similar labels. Additionally, CoE conducts multilabel prediction through the cross-view $k$ nearest neighborhood ( $k$ NN) search among the learned embeddings, which significantly reduces computational costs compared with conventional decoding schemes. A hashing-based model, i.e., Co-Hashing (CoH), is further proposed. CoH is based on CoE, and imposes the binary constraint on continuous latent embeddings. CoH aims to generate compact binary representations to improve the prediction efficiency by benefiting from the efficient $k$ NN search of multiple labels in the Hamming space. Extensive experiments on various real-world data sets demonstrate the superiority of the proposed methods over the state of the arts in terms of both prediction accuracy and efficiency.

摘要

嵌入方法在多标签预测中已展现出有前景的性能,因为它们能够发现标签依赖性。然而,大多数方法忽略了输入与输出之间的相关性,以至于它们所学习到的嵌入没有很好地对齐,这导致预测性能下降。本文从跨视图学习的角度提出了一种多标签学习的公式化方法,该方法探索输入与输出之间的相关性。所提出的方法称为协同嵌入(Co-Embedding,CoE),它在一个框架内联合学习语义公共子空间和视图特定的映射。嵌入之间的语义相似性结构得到进一步保留,确保相近的嵌入共享相似的标签。此外,CoE通过在学习到的嵌入之间进行跨视图的k近邻(k NN)搜索来进行多标签预测,与传统解码方案相比,这显著降低了计算成本。进一步提出了一种基于哈希的模型,即协同哈希(Co-Hashing,CoH)。CoH基于CoE,并对连续的潜在嵌入施加二进制约束。CoH旨在生成紧凑的二进制表示,通过受益于汉明空间中多个标签的高效k NN搜索来提高预测效率。在各种真实世界数据集上进行的大量实验证明了所提出方法在预测准确性和效率方面优于现有技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验