Suppr超能文献

基于规范判别特征空间变换的模式分类。

Norm Discriminant Eigenspace Transform for Pattern Classification.

出版信息

IEEE Trans Cybern. 2019 Jan;49(1):273-286. doi: 10.1109/TCYB.2017.2771530. Epub 2017 Dec 1.

Abstract

Most of the supervised dimensionality reduction (DR) methods design interclass scatter as the separability between the class means, which may force to assume unimodal Gaussian likelihoods and their projection space trends toward the class means. This paper presents a novel DR approach, norm discriminant eigenspace transform (NDET), in which average norms ( l ) of classes have been utilized to characterize the interclass separability and the within-class distance characterizes the intraclass compactness. NDET is intended to accommodate data distributions that may be multimodal and non-Gaussian. We derive an upper bound for NDET, and a specific solution space to attain this bound. Existence of the specific solution is very unwonted, thereby we have considered the solution space of upper bound to achieve better reduction of dimensionality and discrimination of classes. Also, a nonlinear version of NDET (kernel NDET) is developed to model nonlinear relationships between the features. We show, experimentally (on synthetic data) that NDET effectively overcomes the limitations, which arise due to unimodal and data distribution assumptions of the traditional algorithms. Extensive empirical studies are made; and the proposed method is compared with closely related state-of-the-art schemes on UCI machine learning repository and face recognition data sets, to establish its novelty.

摘要

大多数监督降维 (DR) 方法将类间散度设计为类均值之间的可分离性,这可能迫使假设单峰高斯似然函数,并且它们的投影空间趋向于类均值。本文提出了一种新的 DR 方法,即范数判别特征空间变换 (NDET),其中利用类的平均范数 (l) 来表征类间可分离性,而类内距离则表征类内紧凑性。NDET 旨在适应可能是多峰和非高斯的数据分布。我们推导了 NDET 的一个上界,并给出了达到这个上界的具体解空间。具体解的存在是非常不寻常的,因此我们考虑了上界的解空间,以实现更好的降维和类别的区分。此外,还开发了 NDET 的非线性版本 (核 NDET) 来模拟特征之间的非线性关系。我们通过实验 (在合成数据上) 表明,NDET 有效地克服了由于传统算法的单峰和数据分布假设而产生的限制。进行了广泛的实证研究,并将所提出的方法与 UCI 机器学习库和人脸识别数据集上的密切相关的最新方案进行了比较,以确立其新颖性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验