Suppr超能文献

硅纳米薄膜中的多功能纳米裂缝通过缺口辅助转印技术实现。

Multifunctional Nanocracks in Silicon Nanomembranes by Notch-Assisted Transfer Printing.

机构信息

State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology , Chinese Academy of Sciences , Shanghai 200050 , People's Republic of China.

出版信息

ACS Appl Mater Interfaces. 2018 Aug 1;10(30):25644-25651. doi: 10.1021/acsami.8b06962. Epub 2018 Jul 23.

Abstract

Manipulating nanocracks to produce various nanodevices has attracted increasing interest. Here, based on the mature transfer printing technique, a novel notch-assisted transfer printing technique was engaged to produce nanocracks by simply introducing notch structures into the transferred nanomembranes. Both experiments and finite element simulations were used to elucidate the probability of nanocrack formation during the transfer process, and the results demonstrated that the geometry of nanomembranes played a key role in concentrating stress and producing nanocracks. We further demonstrated that the obtained nanocrack can be used as a surface-enhanced Raman scattering substrate because of the significant enhancement of electric fields. In addition, the capillary condensation of water molecules in the nanocrack led to an obvious change of resistance, thus providing an opportunity for the crack-based structure to be used as an ultrasensitive humidity sensor. The current approach can be applied to producing nanocracks from multiple materials and will have important applications in the field of nanodevices.

摘要

操控纳米裂缝来制作各种纳米器件已经引起了越来越多的关注。在这里,我们基于成熟的转印技术,通过在转移的纳米薄膜中引入缺口结构,引入了一种新颖的缺口辅助转印技术来产生纳米裂缝。我们使用实验和有限元模拟来阐明在转印过程中纳米裂缝形成的概率,结果表明纳米薄膜的几何形状在集中应力和产生纳米裂缝方面起着关键作用。我们进一步证明,由于电场的显著增强,获得的纳米裂缝可用作表面增强拉曼散射基底。此外,水分子在纳米裂缝中的毛细冷凝导致电阻的明显变化,从而为基于裂缝的结构用作超灵敏湿度传感器提供了机会。当前的方法可以应用于多种材料的纳米裂缝的制作,在纳米器件领域将有重要的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验