Brussels Photonics, Dept. of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium.
Institut Universitari de Ciències dels Materials, Universitat de València, Catedrático Agustín Escardino 9, 46980, Paterna, Spain.
Nat Commun. 2018 Jul 11;9(1):2675. doi: 10.1038/s41467-018-05081-z.
Graphene is considered a record-performance nonlinear-optical material on the basis of numerous experiments. The observed strong nonlinear response ascribed to the refractive part of graphene's electronic third-order susceptibility χ cannot, however, be explained using the relatively modest χ value theoretically predicted for the 2D material. Here we solve this long-standing paradox and demonstrate that, rather than χ-based refraction, a complex phenomenon which we call saturable photoexcited-carrier refraction is at the heart of nonlinear-optical interactions in graphene such as self-phase modulation. Saturable photoexcited-carrier refraction is found to enable self-phase modulation of picosecond optical pulses with exponential-like bandwidth growth along graphene-covered waveguides. Our theory allows explanation of these extraordinary experimental results both qualitatively and quantitatively. It also supports the graphene nonlinearities measured in previous self-phase modulation and self-(de)focusing (Z-scan) experiments. This work signifies a paradigm shift in the understanding of 2D-material nonlinearities and finally enables their full exploitation in next-generation nonlinear-optical devices.
基于大量实验,石墨烯被认为是一种具有创纪录性能的非线性光学材料。然而,观察到的强非线性响应归因于石墨烯电子三阶极化率 χ 的折射部分,这不能用理论预测的二维材料的相对适中的 χ 值来解释。在这里,我们解决了这个长期存在的悖论,并证明了导致非线性光学相互作用(如自相位调制)的不是基于 χ 的折射,而是我们称之为饱和光激发载流子折射的复杂现象。我们发现,饱和光激发载流子折射使皮秒光脉冲在石墨烯覆盖的波导中产生类似于指数的带宽增长的自相位调制。我们的理论不仅定性而且定量地解释了这些非凡的实验结果。它还支持了先前在自相位调制和自聚焦(Z 扫描)实验中测量的石墨烯非线性。这项工作标志着对二维材料非线性的理解发生了范式转变,并最终使它们能够在下一代非线性光学器件中得到充分利用。