Zhang Xiaowei, Shi Xudong, Sun Yu, Cheng Li
IEEE Trans Pattern Anal Mach Intell. 2019 Feb;41(2):444-458. doi: 10.1109/TPAMI.2017.2776260. Epub 2018 Jan 4.
We consider the topic of multivariate regression on manifold-valued output, that is, for a multivariate observation, its output response lies on a manifold. Moreover, we propose a new regression model to deal with the presence of grossly corrupted manifold-valued responses, a bottleneck issue commonly encountered in practical scenarios. Our model first takes a correction step on the grossly corrupted responses via geodesic curves on the manifold, then performs multivariate linear regression on the corrected data. This results in a nonconvex and nonsmooth optimization problem on Riemannian manifolds. To this end, we propose a dedicated approach named PALMR, by utilizing and extending the proximal alternating linearized minimization techniques for optimization problems on euclidean spaces. Theoretically, we investigate its convergence property, where it is shown to converge to a critical point under mild conditions. Empirically, we test our model on both synthetic and real diffusion tensor imaging data, and show that our model outperforms other multivariate regression models when manifold-valued responses contain gross errors, and is effective in identifying gross errors.
我们考虑多变量流形值输出的回归问题,即对于多变量观测,其输出响应位于一个流形上。此外,我们提出了一种新的回归模型来处理存在严重损坏的流形值响应的情况,这是实际场景中常见的瓶颈问题。我们的模型首先通过流形上的测地线对严重损坏的响应进行校正步骤,然后对校正后的数据进行多变量线性回归。这导致了黎曼流形上的一个非凸且非光滑的优化问题。为此,我们通过利用和扩展欧几里得空间上优化问题的近端交替线性化最小化技术,提出了一种名为PALMR的专用方法。从理论上,我们研究了它的收敛性质,结果表明在温和条件下它会收敛到一个临界点。从实证上,我们在合成和真实扩散张量成像数据上测试了我们的模型,结果表明当流形值响应包含严重误差时,我们的模型优于其他多变量回归模型,并且在识别严重误差方面是有效的。