Suppr超能文献

流形值狄利克雷过程

Manifold-valued Dirichlet Processes.

作者信息

Kim Hyunwoo J, Xu Jia, Vemuri Baba C, Singh Vikas

机构信息

University of Wisconsin-Madison, Madison, WI 53706, USA.

University of Florida, Gainesville, FL 32611, USA.

出版信息

JMLR Workshop Conf Proc. 2015 Jul;2015:1199-1208.

Abstract

Statistical models for manifold-valued data permit capturing the intrinsic nature of the curved spaces in which the data lie and have been a topic of research for several decades. Typically, these formulations use geodesic curves and distances defined for most cases - this makes it hard to design parametric models on smooth manifolds. Thus, most (manifold specific) parametric models available today assume that the data lie in a small neighborhood on the manifold. To address this 'locality' problem, we propose a novel nonparametric model which unifies multivariate general linear models (MGLMs) using multiple tangent spaces. Our framework generalizes existing work on (both Euclidean and non-Euclidean) general linear models providing a recipe to globally extend the locally-defined parametric models (using a mixture of local models). By grouping observations into sub-populations at multiple tangent spaces, our method provides insights into the hidden structure (geodesic relationships) in the data. This yields a framework to group observations and discover geodesic relationships between covariates and manifold-valued responses , which we call Dirichlet process mixtures of multivariate general linear models (DP-MGLM) on Riemannian manifolds. Finally, we present proof of concept experiments to validate our model.

摘要

用于多值数据的统计模型能够捕捉数据所在弯曲空间的内在本质,并且几十年来一直是研究的主题。通常,这些公式使用在大多数情况下定义的测地线曲线和距离——这使得在光滑流形上设计参数模型变得困难。因此,如今大多数现有的(特定于流形的)参数模型都假设数据位于流形上的一个小邻域内。为了解决这个“局部性”问题,我们提出了一种新颖的非参数模型,该模型使用多个切空间统一了多元广义线性模型(MGLM)。我们的框架推广了关于(欧几里得和非欧几里得)广义线性模型的现有工作,提供了一种全局扩展局部定义的参数模型的方法(使用局部模型的混合)。通过在多个切空间将观测值分组为子总体,我们的方法揭示了数据中隐藏的结构(测地关系)。这产生了一个用于对观测值进行分组并发现协变量与多值响应之间测地关系的框架,我们将其称为黎曼流形上的多元广义线性模型的狄利克雷过程混合(DP - MGLM)。最后,我们展示概念验证实验以验证我们的模型。

相似文献

1
Manifold-valued Dirichlet Processes.
JMLR Workshop Conf Proc. 2015 Jul;2015:1199-1208.
2
Dimensionality Reduction of SPD Data Based on Riemannian Manifold Tangent Spaces and Isometry.
Entropy (Basel). 2021 Aug 27;23(9):1117. doi: 10.3390/e23091117.
3
Multivariate General Linear Models (MGLM) on Riemannian Manifolds with Applications to Statistical Analysis of Diffusion Weighted Images.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2014 Jun 23;2014:2705-2712. doi: 10.1109/CVPR.2014.352.
4
Principal Curves on Riemannian Manifolds.
IEEE Trans Pattern Anal Mach Intell. 2016 Sep;38(9):1915-21. doi: 10.1109/TPAMI.2015.2496166. Epub 2015 Oct 29.
5
Multivariate Regression with Gross Errors on Manifold-Valued Data.
IEEE Trans Pattern Anal Mach Intell. 2019 Feb;41(2):444-458. doi: 10.1109/TPAMI.2017.2776260. Epub 2018 Jan 4.
6
Kernel Methods on Riemannian Manifolds with Gaussian RBF Kernels.
IEEE Trans Pattern Anal Mach Intell. 2015 Dec;37(12):2464-77. doi: 10.1109/TPAMI.2015.2414422.
7
ManifoldNet: A Deep Neural Network for Manifold-Valued Data With Applications.
IEEE Trans Pattern Anal Mach Intell. 2022 Feb;44(2):799-810. doi: 10.1109/TPAMI.2020.3003846. Epub 2022 Jan 7.
8
Regression Models on Riemannian Symmetric Spaces.
J R Stat Soc Series B Stat Methodol. 2017 Mar;79(2):463-482. doi: 10.1111/rssb.12169. Epub 2016 Mar 20.
9
Nonlinear regression on Riemannian manifolds and its applications to Neuro-image analysis.
Med Image Comput Comput Assist Interv. 2015 Oct;9349:719-727. doi: 10.1007/978-3-319-24553-9_88. Epub 2015 Nov 18.
10
Parametric Regression on the Grassmannian.
IEEE Trans Pattern Anal Mach Intell. 2016 Nov;38(11):2284-2297. doi: 10.1109/TPAMI.2016.2516533. Epub 2016 Jan 12.

引用本文的文献

1
Riemannian Nonlinear Mixed Effects Models: Analyzing Longitudinal Deformations in Neuroimaging.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2017 Jul;2017:5777-5786. doi: 10.1109/CVPR.2017.612. Epub 2017 Nov 9.
2
Latent Variable Graphical Model Selection using Harmonic Analysis: Applications to the Human Connectome Project (HCP).
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2016 Jun;2016:2443-2451. doi: 10.1109/CVPR.2016.268. Epub 2016 Dec 12.
3
Abundant Inverse Regression using Sufficient Reduction and its Applications.
Comput Vis ECCV. 2016 Oct;9907:570-584. doi: 10.1007/978-3-319-46487-9_35. Epub 2016 Sep 17.

本文引用的文献

1
Age Regression from Faces Using Random Forests.
Proc Int Conf Image Proc. 2009 Nov;2009:2465-2468. doi: 10.1109/ICIP.2009.5414103. Epub 2010 Feb 17.
2
Riemannian Dictionary Learning and Sparse Coding for Positive Definite Matrices.
IEEE Trans Neural Netw Learn Syst. 2017 Dec;28(12):2859-2871. doi: 10.1109/TNNLS.2016.2601307. Epub 2016 Sep 13.
3
Multivariate General Linear Models (MGLM) on Riemannian Manifolds with Applications to Statistical Analysis of Diffusion Weighted Images.
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2014 Jun 23;2014:2705-2712. doi: 10.1109/CVPR.2014.352.
4
Canonical Correlation Analysis on Riemannian Manifolds and Its Applications.
Comput Vis ECCV. 2014;8690:251-267. doi: 10.1007/978-3-319-10605-2_17.
6
Segmentation of high angular resolution diffusion MRI using sparse riemannian manifold clustering.
IEEE Trans Med Imaging. 2014 Feb;33(2):301-17. doi: 10.1109/TMI.2013.2284360. Epub 2013 Oct 3.
7
A NOVEL DYNAMIC SYSTEM IN THE SPACE OF SPD MATRICES WITH APPLICATIONS TO APPEARANCE TRACKING.
SIAM J Imaging Sci. 2013 Mar 11;6(16):592-615. doi: 10.1137/110853376.
8
A nonparametric Riemannian framework for processing high angular resolution diffusion images and its applications to ODF-based morphometry.
Neuroimage. 2011 Jun 1;56(3):1181-201. doi: 10.1016/j.neuroimage.2011.01.053. Epub 2011 Feb 1.
9
Statistical analysis of tensor fields.
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):682-9. doi: 10.1007/978-3-642-15705-9_83.
10
Intrinsic Regression Models for Positive-Definite Matrices With Applications to Diffusion Tensor Imaging.
J Am Stat Assoc. 2009;104(487):1203-1212. doi: 10.1198/jasa.2009.tm08096.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验