IEEE Trans Biomed Eng. 2019 Feb;66(2):302-310. doi: 10.1109/TBME.2018.2837387. Epub 2018 May 16.
Intra-interventional respiratory motion estimation is becoming a vital component in modern radiation therapy delivery or high intensity focused ultrasound systems. The treatment quality could tremendously benefit from more accurate dose delivery using real-time motion tracking based on magnetic-resonance (MR) or ultrasound (US) imaging techniques. However, current practice often relies on indirect measurements of external breathing indicators, which has an inherently limited accuracy. In this work, we present a new approach that is applicable to challenging real-time capable imaging modalities like MR-Linac scanners and 3D-US by employing contrast-invariant feature descriptors.
We combine GPU-accelerated image-based realtime tracking of sparsely distributed feature points and a dense patient-specific motion-model for regularisation and sparse-to-dense interpolation within a unified optimization framework.
We achieve highly accurate motion predictions with landmark errors of ≈ 1 mm for MRI (and ≈ 2 mm for US) and substantial improvements over classical template tracking strategies.
Our technique can model physiological respiratory motion more realistically and deals particularly well with the sliding of lungs against the rib cage.
Our model-based sparse-to-dense image registration approach allows for accurate and realtime respiratory motion tracking in image-guided interventions.
介入内呼吸运动估计正在成为现代放射治疗或高强度聚焦超声系统的一个重要组成部分。利用基于磁共振(MR)或超声(US)成像技术的实时运动跟踪进行更精确的剂量输送,将极大地提高治疗质量。然而,目前的实践通常依赖于对外部呼吸指标的间接测量,其固有精度有限。在这项工作中,我们提出了一种新的方法,该方法适用于具有挑战性的实时成像模式,如 MR-Linac 扫描仪和 3D-US,通过使用对比度不变特征描述符。
我们结合了基于 GPU 的稀疏特征点实时跟踪和针对特定患者的运动模型,在统一的优化框架内进行正则化和稀疏到密集插值。
我们实现了高度精确的运动预测,MRI 的地标误差约为 1mm(US 约为 2mm),并且相对于经典模板跟踪策略有了显著的改进。
我们的技术可以更真实地模拟生理呼吸运动,并且特别处理肺部与肋骨之间的滑动。
我们的基于模型的稀疏到密集图像配准方法允许在图像引导干预中进行准确和实时的呼吸运动跟踪。