Suppr超能文献

医学图像配准中的深度学习综述:新技术、不确定性、评估指标及其他

A survey on deep learning in medical image registration: New technologies, uncertainty, evaluation metrics, and beyond.

作者信息

Chen Junyu, Liu Yihao, Wei Shuwen, Bian Zhangxing, Subramanian Shalini, Carass Aaron, Prince Jerry L, Du Yong

机构信息

Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, MD, USA.

Department of Electrical and Computer Engineering, Johns Hopkins University, MD, USA.

出版信息

Med Image Anal. 2025 Feb;100:103385. doi: 10.1016/j.media.2024.103385. Epub 2024 Nov 10.

Abstract

Deep learning technologies have dramatically reshaped the field of medical image registration over the past decade. The initial developments, such as regression-based and U-Net-based networks, established the foundation for deep learning in image registration. Subsequent progress has been made in various aspects of deep learning-based registration, including similarity measures, deformation regularizations, network architectures, and uncertainty estimation. These advancements have not only enriched the field of image registration but have also facilitated its application in a wide range of tasks, including atlas construction, multi-atlas segmentation, motion estimation, and 2D-3D registration. In this paper, we present a comprehensive overview of the most recent advancements in deep learning-based image registration. We begin with a concise introduction to the core concepts of deep learning-based image registration. Then, we delve into innovative network architectures, loss functions specific to registration, and methods for estimating registration uncertainty. Additionally, this paper explores appropriate evaluation metrics for assessing the performance of deep learning models in registration tasks. Finally, we highlight the practical applications of these novel techniques in medical imaging and discuss the future prospects of deep learning-based image registration.

摘要

在过去十年中,深度学习技术极大地重塑了医学图像配准领域。诸如基于回归和基于U-Net的网络等最初的发展,为深度学习在图像配准中的应用奠定了基础。随后,基于深度学习的配准在各个方面都取得了进展,包括相似性度量、变形正则化、网络架构和不确定性估计。这些进展不仅丰富了图像配准领域,还促进了其在广泛任务中的应用,包括图谱构建、多图谱分割、运动估计和二维到三维配准。在本文中,我们全面概述了基于深度学习的图像配准的最新进展。我们首先简要介绍基于深度学习的图像配准的核心概念。然后,我们深入探讨创新的网络架构、特定于配准的损失函数以及估计配准不确定性的方法。此外,本文还探讨了用于评估深度学习模型在配准任务中性能的适当评估指标。最后,我们强调这些新技术在医学成像中的实际应用,并讨论基于深度学习的图像配准的未来前景。

相似文献

10
A Review Paper about Deep Learning for Medical Image Analysis.深度学习在医学图像分析中的应用综述
Comput Math Methods Med. 2023 May 29;2023:7091301. doi: 10.1155/2023/7091301. eCollection 2023.

引用本文的文献

2
[AI-based applications in medical image computing].医学图像计算中基于人工智能的应用
Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2025 Jul 2. doi: 10.1007/s00103-025-04093-7.
3
Comprehensive review of reinforcement learning for medical ultrasound imaging.医学超声成像强化学习综述
Artif Intell Rev. 2025;58(9):284. doi: 10.1007/s10462-025-11268-w. Epub 2025 Jun 23.

本文引用的文献

1
Vector field attention for deformable image registration.用于可变形图像配准的向量场注意力
J Med Imaging (Bellingham). 2024 Nov;11(6):064001. doi: 10.1117/1.JMI.11.6.064001. Epub 2024 Nov 6.
2
GradICON: Approximate Diffeomorphisms via Gradient Inverse Consistency.GradICON:通过梯度逆一致性实现近似微分同胚
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2023 Jun;2023:18084-18094. doi: 10.1109/cvpr52729.2023.01734. Epub 2023 Aug 22.
3
DeepAtlas: Joint Semi-Supervised Learning of Image Registration and Segmentation.深度图谱:图像配准与分割的联合半监督学习
Med Image Comput Comput Assist Interv. 2019 Oct;11765:420-429. doi: 10.1007/978-3-030-32245-8_47. Epub 2019 Oct 10.
4
VOTENET++: REGISTRATION REFINEMENT FOR MULTI-ATLAS SEGMENTATION.VOTENET++:多图谱分割的配准优化
Proc IEEE Int Symp Biomed Imaging. 2021 Apr;2021:275-279. doi: 10.1109/isbi48211.2021.9434031. Epub 2021 May 25.
7
Learning Expected Appearances for Intraoperative Registration during Neurosurgery.学习神经外科手术中术中配准的预期表现。
Med Image Comput Comput Assist Interv. 2023 Oct;14228:227-237. doi: 10.1007/978-3-031-43996-4_22. Epub 2023 Oct 1.
8
MAIRNet: weakly supervised anatomy-aware multimodal articulated image registration network.MAIRNet:弱监督解剖感知多模态关节图像配准网络。
Int J Comput Assist Radiol Surg. 2024 Mar;19(3):507-517. doi: 10.1007/s11548-023-03056-0. Epub 2024 Jan 18.
9
Contrastive Registration for Unsupervised Medical Image Segmentation.用于无监督医学图像分割的对比配准
IEEE Trans Neural Netw Learn Syst. 2025 Jan;36(1):147-159. doi: 10.1109/TNNLS.2023.3332003. Epub 2025 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验