Suppr超能文献

数据自适应时空 ERP 清洗在单试脑机接口中的应用。

Data-Adaptive Spatiotemporal ERP Cleaning for Single-Trial BCI Implementation.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2018 Jul;26(7):1334-1344. doi: 10.1109/TNSRE.2018.2844109. Epub 2018 Jun 4.

Abstract

This paper presents a data-adaptive approach to enhance the discriminative information of event-related potential (ERP) for the implementation of a brain-computer interface (BCI). The use of single-trial ERP in a real-time BCI application is challenging, due to its inherent noise contamination. Usually, multiple-trial ERPs are averaged to derive discriminative features of different classes by reducing their noise effects. Time-domain filtering is implemented here using an array wavelet transform. Sometimes, several channels can carry the signals, which are irrelevant to actual EPR information against the respective stimuli. A spatial filtering method based on clustering is introduced, to suppress such channels if any. Hence, the single-trial ERP is filtered in both the spatial and temporal domains to improve its discriminative features. The spatial-temporal discriminate analysis is employed to derive the features leading to the performance of target and non-target classification by using linear discriminant analysis. The proposed method is validated using a data set recorded from our experiments. The experimental results show that the performance of the proposed method is superior to that of the recently developed algorithms for single-trial ERP classification.

摘要

本文提出了一种数据自适应方法,用于增强事件相关电位(ERP)的判别信息,以实现脑机接口(BCI)。由于其固有的噪声污染,在实时 BCI 应用中使用单次 ERP 是具有挑战性的。通常,通过平均多次试验 ERP 来减少其噪声影响,从而得出不同类别的判别特征。此处使用阵列小波变换实现时域滤波。有时,多个通道可以携带与相应刺激无关的信号,这些信号与实际的 EPR 信息无关。引入了一种基于聚类的空间滤波方法,如果存在这样的通道,则可以对其进行抑制。因此,通过在空间和时间域中对单次 ERP 进行滤波来提高其判别特征。通过使用线性判别分析,采用时空判别分析来导出导致目标和非目标分类性能的特征。使用我们的实验记录的数据集验证了所提出的方法。实验结果表明,所提出的方法在单次 ERP 分类方面的性能优于最近开发的算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验