Suppr超能文献

基于生物学启发的四叉树颜色检测在黑素瘤皮肤镜图像中的应用。

Biologically Inspired QuadTree Color Detection in Dermoscopy Images of Melanoma.

出版信息

IEEE J Biomed Health Inform. 2019 Mar;23(2):570-577. doi: 10.1109/JBHI.2018.2841428. Epub 2018 May 28.

Abstract

This paper presents a QuadTree-based melanoma detection system inspired by dermatologists' color perception. Clinical color assessment in dermoscopy images is challenging because of subtle differences in shades, location-dependent color information, poor color contrast, and wide variation among images of the same class. To overcome these challenges, color enhancement and automatic color identification techniques, based on QuadTree segmentation and modeled after expert color assessments, are developed. The approach presented in this paper is shown to provide an accurate model of expert color assessment. Specifically, the proposed model is shown to: 1) identify significantly more colors in melanomas than in benign skin lesions; 2) identify a higher frequency in melanomas of three colors: blue-gray, black, and pink; and 3) delineate locations of melanoma colors by quintiles, specifically predilection for blue-gray and pink in the periphery and a trend for white and black in the lesion center. Performance of the proposed method is evaluated using four classifiers. The kernel support vector machine classifier is found to achieve the best results, with an area under the receiver operating characteristic (ROC) curve of 0.93, compared to average area under the ROC curve of 0.82 achieved by the dermatologists in this study. The results indicate that the biologically inspired method of automatic color detection proposed in this paper has the potential to play an important role in melanoma diagnosis in the clinic.

摘要

本文提出了一种基于四叉树的黑色素瘤检测系统,灵感来自皮肤科医生的颜色感知。在皮肤镜图像中进行临床颜色评估具有挑战性,因为色调存在细微差异、位置相关的颜色信息、颜色对比度差以及同一类别图像之间存在广泛差异。为了克服这些挑战,开发了基于四叉树分割的颜色增强和自动颜色识别技术,这些技术是模仿专家颜色评估而建立的。本文提出的方法被证明提供了专家颜色评估的准确模型。具体来说,所提出的模型被证明:1)比良性皮肤病变能识别出更多的黑色素瘤颜色;2)黑色素瘤中三种颜色(蓝灰色、黑色和粉红色)的频率更高;3)通过五分位数来描绘黑色素瘤颜色的位置,特别是在边缘处对蓝灰色和粉红色的偏好,以及病变中心处对白色和黑色的趋势。使用四个分类器评估了所提出方法的性能。核支持向量机分类器的表现最佳,接收器操作特性 (ROC) 曲线下的面积为 0.93,而本研究中皮肤科医生的平均 ROC 曲线下面积为 0.82。结果表明,本文提出的基于生物启发的自动颜色检测方法具有在临床中在黑色素瘤诊断中发挥重要作用的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验