文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

计算机算法显示出提高皮肤科医生诊断皮肤黑色素瘤准确性的潜力:国际皮肤成像协作 2017 年的研究结果。

Computer algorithms show potential for improving dermatologists' accuracy to diagnose cutaneous melanoma: Results of the International Skin Imaging Collaboration 2017.

机构信息

Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.

Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.

出版信息

J Am Acad Dermatol. 2020 Mar;82(3):622-627. doi: 10.1016/j.jaad.2019.07.016. Epub 2019 Jul 12.


DOI:10.1016/j.jaad.2019.07.016
PMID:31306724
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7006718/
Abstract

BACKGROUND: Computer vision has promise in image-based cutaneous melanoma diagnosis but clinical utility is uncertain. OBJECTIVE: To determine if computer algorithms from an international melanoma detection challenge can improve dermatologists' accuracy in diagnosing melanoma. METHODS: In this cross-sectional study, we used 150 dermoscopy images (50 melanomas, 50 nevi, 50 seborrheic keratoses) from the test dataset of a melanoma detection challenge, along with algorithm results from 23 teams. Eight dermatologists and 9 dermatology residents classified dermoscopic lesion images in an online reader study and provided their confidence level. RESULTS: The top-ranked computer algorithm had an area under the receiver operating characteristic curve of 0.87, which was higher than that of the dermatologists (0.74) and residents (0.66) (P < .001 for all comparisons). At the dermatologists' overall sensitivity in classification of 76.0%, the algorithm had a superior specificity (85.0% vs. 72.6%, P = .001). Imputation of computer algorithm classifications into dermatologist evaluations with low confidence ratings (26.6% of evaluations) increased dermatologist sensitivity from 76.0% to 80.8% and specificity from 72.6% to 72.8%. LIMITATIONS: Artificial study setting lacking the full spectrum of skin lesions as well as clinical metadata. CONCLUSION: Accumulating evidence suggests that deep neural networks can classify skin images of melanoma and its benign mimickers with high accuracy and potentially improve human performance.

摘要

背景:计算机视觉在基于图像的皮肤黑色素瘤诊断中具有应用前景,但临床实用性尚不确定。

目的:评估国际黑色素瘤检测挑战赛中的计算机算法是否能提高皮肤科医生诊断黑色素瘤的准确性。

方法:在这项横断面研究中,我们使用了来自黑色素瘤检测挑战赛测试数据集的 150 张皮肤镜图像(50 个黑素瘤、50 个痣、50 个脂溢性角化病),以及 23 个团队的算法结果。8 名皮肤科医生和 9 名皮肤科住院医师在在线阅读者研究中对皮肤镜病变图像进行分类,并提供他们的置信度水平。

结果:排名最高的计算机算法的受试者工作特征曲线下面积为 0.87,高于皮肤科医生(0.74)和住院医师(0.66)(所有比较的 P 值均<.001)。在皮肤科医生整体分类敏感性为 76.0%的情况下,该算法的特异性更高(85.0%比 72.6%,P =.001)。在将计算机算法分类结果代入到皮肤科医生的低置信度评分评估中(占评估的 26.6%),可以将皮肤科医生的敏感性从 76.0%提高到 80.8%,特异性从 72.6%提高到 72.8%。

局限性:人工研究环境缺乏完整的皮肤病变谱以及临床元数据。

结论:越来越多的证据表明,深度神经网络可以高精度地对皮肤黑色素瘤及其良性模拟物进行分类,并且可能提高人类的表现。

相似文献

[1]
Computer algorithms show potential for improving dermatologists' accuracy to diagnose cutaneous melanoma: Results of the International Skin Imaging Collaboration 2017.

J Am Acad Dermatol. 2019-7-12

[2]
Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images.

J Am Acad Dermatol. 2017-9-29

[3]
Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists.

Ann Oncol. 2018-8-1

[4]
A new deep learning approach integrated with clinical data for the dermoscopic differentiation of early melanomas from atypical nevi.

J Dermatol Sci. 2021-2

[5]
Deep neural networks are superior to dermatologists in melanoma image classification.

Eur J Cancer. 2019-8-8

[6]
Artificial Intelligence and Its Effect on Dermatologists' Accuracy in Dermoscopic Melanoma Image Classification: Web-Based Survey Study.

J Med Internet Res. 2020-9-11

[7]
Dermoscopy, with and without visual inspection, for diagnosing melanoma in adults.

Cochrane Database Syst Rev. 2018-12-4

[8]
Computerizing the first step of the two-step algorithm in dermoscopy: A convolutional neural network for differentiating melanocytic from non-melanocytic skin lesions.

Eur J Cancer. 2024-10

[9]
Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task.

Eur J Cancer. 2019-4-10

[10]
Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks.

Eur J Cancer. 2019-8-14

引用本文的文献

[1]
Enhancing skin lesion classification: a CNN approach with human baseline comparison.

PeerJ Comput Sci. 2025-4-15

[2]
Modern artificial intelligence and large language models in graduate medical education: a scoping review of attitudes, applications & practice.

BMC Med Educ. 2025-5-20

[3]
AI Dermatochroma Analytica (AIDA): Smart Technology for Robust Skin Color Classification and Segmentation.

Cosmetics. 2024-12

[4]
Artificial Intelligence in the Non-Invasive Detection of Melanoma.

Life (Basel). 2024-12-4

[5]
Skin Cancer Diagnosis by Lesion, Physician, and Examination Type: A Systematic Review and Meta-Analysis.

JAMA Dermatol. 2025-2-1

[6]
Improving Skin Color Diversity in Cancer Detection: Deep Learning Approach.

JMIR Dermatol. 2022-8-19

[7]
The Role of Artificial Intelligence in the Diagnosis of Melanoma.

Cureus. 2024-9-20

[8]
Enhancing Dermatological Diagnostics with EfficientNet: A Deep Learning Approach.

Bioengineering (Basel). 2024-8-9

[9]
The SLICE-3D dataset: 400,000 skin lesion image crops extracted from 3D TBP for skin cancer detection.

Sci Data. 2024-8-14

[10]
A systematic review and meta-analysis of artificial intelligence versus clinicians for skin cancer diagnosis.

NPJ Digit Med. 2024-5-14

本文引用的文献

[1]
Expert-Level Diagnosis of Nonpigmented Skin Cancer by Combined Convolutional Neural Networks.

JAMA Dermatol. 2019-1-1

[2]
Enhanced melanoma diagnosis with multispectral digital skin lesion analysis.

Cutis. 2018-5

[3]
Automated Dermatological Diagnosis: Hype or Reality?

J Invest Dermatol. 2018-10

[4]
Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists.

Ann Oncol. 2018-8-1

[5]
Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using a Deep Learning Algorithm.

J Invest Dermatol. 2018-2-8

[6]
Results of the 2016 International Skin Imaging Collaboration International Symposium on Biomedical Imaging challenge: Comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images.

J Am Acad Dermatol. 2017-9-29

[7]
Overview of deep learning in medical imaging.

Radiol Phys Technol. 2017-9

[8]
What is an ROC curve?

Emerg Med J. 2017-6

[9]
Dermatologist-level classification of skin cancer with deep neural networks.

Nature. 2017-2-2

[10]
The performance of MelaFind: a prospective multicenter study.

Arch Dermatol. 2011-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索