Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
J Am Acad Dermatol. 2020 Mar;82(3):622-627. doi: 10.1016/j.jaad.2019.07.016. Epub 2019 Jul 12.
BACKGROUND: Computer vision has promise in image-based cutaneous melanoma diagnosis but clinical utility is uncertain. OBJECTIVE: To determine if computer algorithms from an international melanoma detection challenge can improve dermatologists' accuracy in diagnosing melanoma. METHODS: In this cross-sectional study, we used 150 dermoscopy images (50 melanomas, 50 nevi, 50 seborrheic keratoses) from the test dataset of a melanoma detection challenge, along with algorithm results from 23 teams. Eight dermatologists and 9 dermatology residents classified dermoscopic lesion images in an online reader study and provided their confidence level. RESULTS: The top-ranked computer algorithm had an area under the receiver operating characteristic curve of 0.87, which was higher than that of the dermatologists (0.74) and residents (0.66) (P < .001 for all comparisons). At the dermatologists' overall sensitivity in classification of 76.0%, the algorithm had a superior specificity (85.0% vs. 72.6%, P = .001). Imputation of computer algorithm classifications into dermatologist evaluations with low confidence ratings (26.6% of evaluations) increased dermatologist sensitivity from 76.0% to 80.8% and specificity from 72.6% to 72.8%. LIMITATIONS: Artificial study setting lacking the full spectrum of skin lesions as well as clinical metadata. CONCLUSION: Accumulating evidence suggests that deep neural networks can classify skin images of melanoma and its benign mimickers with high accuracy and potentially improve human performance.
背景:计算机视觉在基于图像的皮肤黑色素瘤诊断中具有应用前景,但临床实用性尚不确定。
目的:评估国际黑色素瘤检测挑战赛中的计算机算法是否能提高皮肤科医生诊断黑色素瘤的准确性。
方法:在这项横断面研究中,我们使用了来自黑色素瘤检测挑战赛测试数据集的 150 张皮肤镜图像(50 个黑素瘤、50 个痣、50 个脂溢性角化病),以及 23 个团队的算法结果。8 名皮肤科医生和 9 名皮肤科住院医师在在线阅读者研究中对皮肤镜病变图像进行分类,并提供他们的置信度水平。
结果:排名最高的计算机算法的受试者工作特征曲线下面积为 0.87,高于皮肤科医生(0.74)和住院医师(0.66)(所有比较的 P 值均<.001)。在皮肤科医生整体分类敏感性为 76.0%的情况下,该算法的特异性更高(85.0%比 72.6%,P =.001)。在将计算机算法分类结果代入到皮肤科医生的低置信度评分评估中(占评估的 26.6%),可以将皮肤科医生的敏感性从 76.0%提高到 80.8%,特异性从 72.6%提高到 72.8%。
局限性:人工研究环境缺乏完整的皮肤病变谱以及临床元数据。
结论:越来越多的证据表明,深度神经网络可以高精度地对皮肤黑色素瘤及其良性模拟物进行分类,并且可能提高人类的表现。
Eur J Cancer. 2019-8-8
Cochrane Database Syst Rev. 2018-12-4
PeerJ Comput Sci. 2025-4-15
Life (Basel). 2024-12-4
JMIR Dermatol. 2022-8-19
Cureus. 2024-9-20
Bioengineering (Basel). 2024-8-9
J Invest Dermatol. 2018-10
Radiol Phys Technol. 2017-9
Emerg Med J. 2017-6
Arch Dermatol. 2011-2