Suppr超能文献

Multi-Normal Estimation via Pair Consistency Voting.

作者信息

Zhang Jie, Cao Junjie, Liu Xiuping, Chen He, Li Bo, Liu Ligang

出版信息

IEEE Trans Vis Comput Graph. 2019 Apr;25(4):1693-1706. doi: 10.1109/TVCG.2018.2827998. Epub 2018 Apr 17.

Abstract

The normals of feature points, i.e., the intersection points of multiple smooth surfaces, are ambiguous and undefined. This paper presents a unified definition for point cloud normals of feature and non-feature points, which allows feature points to possess multiple normals. This definition facilitates several succeeding operations, such as feature points extraction and point cloud filtering. We also develop a feature preserving normal estimation method which outputs multiple normals per feature point. The core of the method is a pair consistency voting scheme. All neighbor point pairs vote for the local tangent plane. Each vote takes the fitting residuals of the pair of points and their preliminary normal consistency into consideration. Thus the pairs from the same subspace and relatively far off features dominate the voting. An adaptive strategy is designed to overcome sampling anisotropy. In addition, we introduce an error measure compatible with traditional normal estimators, and present the first benchmark for normal estimation, composed of 152 synthesized data with various features and sampling densities, and 288 real scans with different noise levels. Comprehensive and quantitative experiments show that our method generates faithful feature preserving normals and outperforms previous cutting edge normal estimation methods, including the latest deep learning based method.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验