IEEE J Biomed Health Inform. 2019 Mar;23(2):805-816. doi: 10.1109/JBHI.2018.2827703. Epub 2018 Apr 16.
Compact binary representations of histopa-thology images using hashing methods provide efficient approximate nearest neighbor search for direct visual query in large-scale databases. They can be utilized to measure the probability of the abnormality of the query image based on the retrieved similar cases, thereby providing support for medical diagnosis. They also allow for efficient managing of large-scale image databases because of a low storage requirement. However, the effectiveness of binary representations heavily relies on the visual descriptors that represent the semantic information in the histopathological images. Traditional approaches with hand-crafted visual descriptors might fail due to significant variations in image appearance. Recently, deep learning architectures provide promising solutions to address this problem using effective semantic representations. In this paper, we propose a deep convolutional hashing method that can be trained "point-wise" to simultaneously learn both semantic and binary representations of histopathological images. Specifically, we propose a convolutional neural network that introduces a latent binary encoding (LBE) layer for low-dimensional feature embedding to learn binary codes. We design a joint optimization objective function that encourages the network to learn discriminative representations from the label information, and reduce the gap between the real-valued low-dimensional embedded features and desired binary values. The binary encoding for new images can be obtained by forward propagating through the network and quantizing the output of the LBE layer. Experimental results on a large-scale histopathological image dataset demonstrate the effectiveness of the proposed method.
使用哈希方法对组织病理学图像进行紧凑的二进制表示,为在大规模数据库中进行直接视觉查询提供了高效的近似最近邻搜索。它们可以用于根据检索到的相似病例来测量查询图像异常的概率,从而为医学诊断提供支持。由于存储要求低,它们还允许高效管理大规模图像数据库。但是,二进制表示的有效性在很大程度上依赖于表示组织病理学图像中语义信息的视觉描述符。由于图像外观存在显著差异,传统的基于手工制作的视觉描述符的方法可能会失败。最近,深度学习架构提供了有前途的解决方案,使用有效的语义表示来解决这个问题。在本文中,我们提出了一种深度卷积哈希方法,该方法可以“逐点”训练,以同时学习组织病理学图像的语义和二进制表示。具体来说,我们提出了一种卷积神经网络,该网络引入了一个潜在的二进制编码(LBE)层,用于学习低维特征嵌入的二进制编码。我们设计了一个联合优化目标函数,鼓励网络从标签信息中学习判别表示,并减小实值低维嵌入特征和期望二进制值之间的差距。新图像的二进制编码可以通过向前传播通过网络并量化 LBE 层的输出来获得。在大规模组织病理学图像数据集上的实验结果证明了所提出方法的有效性。