Suppr超能文献

使用深度卷积神经网络进行肌肉束膜自动标注

AUTOMATIC MUSCLE PERIMYSIUM ANNOTATION USING DEEP CONVOLUTIONAL NEURAL NETWORK.

作者信息

Sapkota Manish, Xing Fuyong, Su Hai, Yang Lin

机构信息

Department of Electrical and Computer Engineering, University of Florida.

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2015 Apr;2015:205-208. doi: 10.1109/ISBI.2015.7163850. Epub 2015 Jul 23.

Abstract

Diseased skeletal muscle expresses mononuclear cell infiltration in the regions of perimysium. Accurate annotation or segmentation of perimysium can help biologists and clinicians to determine individualized patient treatment and allow for reasonable prognostication. However, manual perimysium annotation is time consuming and prone to inter-observer variations. Meanwhile, the presence of ambiguous patterns in muscle images significantly challenge many traditional automatic annotation algorithms. In this paper, we propose an automatic perimysium annotation algorithm based on deep convolutional neural network (CNN). We formulate the automatic annotation of perimysium in muscle images as a pixel-wise classification problem, and the CNN is trained to label each image pixel with raw RGB values of the patch centered at the pixel. The algorithm is applied to 82 diseased skeletal muscle images. We have achieved an average precision of 94% on the test dataset.

摘要

患病骨骼肌在肌束膜区域表现出单核细胞浸润。准确标注或分割肌束膜有助于生物学家和临床医生确定个体化的患者治疗方案并进行合理的预后评估。然而,手动标注肌束膜既耗时又容易出现观察者间差异。同时,肌肉图像中存在的模糊模式对许多传统的自动标注算法构成了重大挑战。在本文中,我们提出了一种基于深度卷积神经网络(CNN)的肌束膜自动标注算法。我们将肌肉图像中肌束膜的自动标注问题表述为逐像素分类问题,并训练CNN使用以该像素为中心的图像块的原始RGB值对每个图像像素进行标注。该算法应用于82张患病骨骼肌图像。我们在测试数据集上实现了94%的平均精度。

相似文献

1
AUTOMATIC MUSCLE PERIMYSIUM ANNOTATION USING DEEP CONVOLUTIONAL NEURAL NETWORK.
Proc IEEE Int Symp Biomed Imaging. 2015 Apr;2015:205-208. doi: 10.1109/ISBI.2015.7163850. Epub 2015 Jul 23.
2
Spatial Clockwork Recurrent Neural Network for Muscle Perimysium Segmentation.
Med Image Comput Comput Assist Interv. 2016 Oct;9901:185-193. doi: 10.1007/978-3-319-46723-8_22. Epub 2016 Oct 2.
3
Automatic image annotation method based on a convolutional neural network with threshold optimization.
PLoS One. 2020 Sep 23;15(9):e0238956. doi: 10.1371/journal.pone.0238956. eCollection 2020.
5
Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier.
Med Image Anal. 2019 Jan;51:46-60. doi: 10.1016/j.media.2018.10.005. Epub 2018 Oct 22.
6
Convolutional neural networks for skull-stripping in brain MR imaging using silver standard masks.
Artif Intell Med. 2019 Jul;98:48-58. doi: 10.1016/j.artmed.2019.06.008. Epub 2019 Jul 23.
7
ELNet:Automatic classification and segmentation for esophageal lesions using convolutional neural network.
Med Image Anal. 2021 Jan;67:101838. doi: 10.1016/j.media.2020.101838. Epub 2020 Oct 7.
8
Ultrasound image-based thyroid nodule automatic segmentation using convolutional neural networks.
Int J Comput Assist Radiol Surg. 2017 Nov;12(11):1895-1910. doi: 10.1007/s11548-017-1649-7. Epub 2017 Jul 31.
10
Psoriasis skin biopsy image segmentation using Deep Convolutional Neural Network.
Comput Methods Programs Biomed. 2018 Jun;159:59-69. doi: 10.1016/j.cmpb.2018.01.027. Epub 2018 Feb 6.

引用本文的文献

1
Advanced hybrid deep learning model for enhanced evaluation of osteosarcoma histopathology images.
Front Med (Lausanne). 2025 Apr 16;12:1555907. doi: 10.3389/fmed.2025.1555907. eCollection 2025.
2
A neural network approach to analyze cross-sections of muscle fibers in pathological images.
Comput Biol Med. 2019 Jan;104:97-104. doi: 10.1016/j.compbiomed.2018.11.007. Epub 2018 Nov 12.
3
Deep Convolutional Hashing for Low-Dimensional Binary Embedding of Histopathological Images.
IEEE J Biomed Health Inform. 2019 Mar;23(2):805-816. doi: 10.1109/JBHI.2018.2827703. Epub 2018 Apr 16.
4
AIIMDs: An Integrated Framework of Automatic Idiopathic Inflammatory Myopathy Diagnosis for Muscle.
IEEE J Biomed Health Inform. 2018 May;22(3):942-954. doi: 10.1109/JBHI.2017.2694344. Epub 2017 Apr 13.

本文引用的文献

1
A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations.
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):520-7. doi: 10.1007/978-3-319-10404-1_65.
2
Unsupervised deep feature learning for deformable registration of MR brain images.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):649-56. doi: 10.1007/978-3-642-40763-5_80.
3
Mitosis detection in breast cancer histology images with deep neural networks.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):411-8. doi: 10.1007/978-3-642-40763-5_51.
4
A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):403-10. doi: 10.1007/978-3-642-40763-5_50.
5
Representation learning: a unified deep learning framework for automatic prostate MR segmentation.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):254-61. doi: 10.1007/978-3-642-40763-5_32.
6
Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):246-53. doi: 10.1007/978-3-642-40763-5_31.
7
Learning hierarchical features for scene labeling.
IEEE Trans Pattern Anal Mach Intell. 2013 Aug;35(8):1915-29. doi: 10.1109/TPAMI.2012.231.
8
Context-constrained multiple instance learning for histopathology image segmentation.
Med Image Comput Comput Assist Interv. 2012;15(Pt 3):623-30. doi: 10.1007/978-3-642-33454-2_77.
9
Exercise-induced muscle damage and inflammation: re-evaluation by proteomics.
Histochem Cell Biol. 2012 Jul;138(1):89-99. doi: 10.1007/s00418-012-0946-z. Epub 2012 Apr 10.
10
Structure and function of the skeletal muscle extracellular matrix.
Muscle Nerve. 2011 Sep;44(3):318-31. doi: 10.1002/mus.22094.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验