Sapkota Manish, Xing Fuyong, Su Hai, Yang Lin
Department of Electrical and Computer Engineering, University of Florida.
J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida.
Proc IEEE Int Symp Biomed Imaging. 2015 Apr;2015:205-208. doi: 10.1109/ISBI.2015.7163850. Epub 2015 Jul 23.
Diseased skeletal muscle expresses mononuclear cell infiltration in the regions of perimysium. Accurate annotation or segmentation of perimysium can help biologists and clinicians to determine individualized patient treatment and allow for reasonable prognostication. However, manual perimysium annotation is time consuming and prone to inter-observer variations. Meanwhile, the presence of ambiguous patterns in muscle images significantly challenge many traditional automatic annotation algorithms. In this paper, we propose an automatic perimysium annotation algorithm based on deep convolutional neural network (CNN). We formulate the automatic annotation of perimysium in muscle images as a pixel-wise classification problem, and the CNN is trained to label each image pixel with raw RGB values of the patch centered at the pixel. The algorithm is applied to 82 diseased skeletal muscle images. We have achieved an average precision of 94% on the test dataset.
患病骨骼肌在肌束膜区域表现出单核细胞浸润。准确标注或分割肌束膜有助于生物学家和临床医生确定个体化的患者治疗方案并进行合理的预后评估。然而,手动标注肌束膜既耗时又容易出现观察者间差异。同时,肌肉图像中存在的模糊模式对许多传统的自动标注算法构成了重大挑战。在本文中,我们提出了一种基于深度卷积神经网络(CNN)的肌束膜自动标注算法。我们将肌肉图像中肌束膜的自动标注问题表述为逐像素分类问题,并训练CNN使用以该像素为中心的图像块的原始RGB值对每个图像像素进行标注。该算法应用于82张患病骨骼肌图像。我们在测试数据集上实现了94%的平均精度。