IEEE Trans Neural Netw Learn Syst. 2018 Dec;29(12):6242-6251. doi: 10.1109/TNNLS.2018.2828140. Epub 2018 May 10.
This paper is concerned with the adaptive event-triggered control problem for a class of pure-feedback nonlinear systems. Unlike the existing results where the control execution is periodic, the new proposed scheme updates the controller and the neural network weights only when desired control specifications cannot be guaranteed. Clearly, this can largely reduce the amount of transmission data. Besides, since the event-trigger error is discontinuous because of the event-triggering mechanism, the stability analysis in the classical sense may not be guaranteed. To solve this problem, we formulate the event-triggered network control systems as a nonlinear impulsive dynamical system, and a novel Lyapunov theorem is used to show the stability properties of the closed-loop systems. Finally, two simulation examples are given to illustrate the effectiveness of the theoretical results.
本文研究了一类纯反馈非线性系统的自适应事件触发控制问题。与现有结果不同,现有结果中的控制执行是周期性的,而新提出的方案仅在无法保证所需控制规范时更新控制器和神经网络权重。显然,这可以大大减少传输数据的数量。此外,由于事件触发机制,事件触发误差不连续,因此可能无法保证经典意义上的稳定性分析。为了解决这个问题,我们将事件触发网络控制系统表示为非线性脉冲动力系统,并使用新的 Lyapunov 定理来展示闭环系统的稳定性特性。最后,给出了两个仿真示例来说明理论结果的有效性。