Suppr超能文献

基于电子病历数据库的外科患者住院时间两阶段预测模型

A Two-Stage Model to Predict Surgical Patients' Lengths of Stay From an Electronic Patient Database.

出版信息

IEEE J Biomed Health Inform. 2019 Mar;23(2):848-856. doi: 10.1109/JBHI.2018.2819646. Epub 2018 Mar 26.

Abstract

Soaring healthcare costs and the growing demand for services require us to use healthcare resources more efficiently. Randomness in resource requirements makes the care delivery process less efficient. Our aim is to reduce the uncertainty in patients' resource requirements, and we achieve that objective by classifying patients into similar resource user groups. In this article, we develop a two-stage classification model to classify patients into lower variability resource user groups by using electronic patient records. There are various statistical tools for classifying patients into lower variability resource user groups. However, classification and regression tree (CART) analysis is a more suitable method for analyzing healthcare data because it has some distinct features. For example, it can handle the interaction between predictor variables naturally, it is nonparametric in nature, and it is relatively insensitive to the curse of dimensionality. We found that the CART analysis is also useful for determining the patient attributes that can explain the variability in resource requirements. Furthermore, we observed that some of the covariates, such as the principal prescribed procedure code, the admission point, and the operating surgeon, were able to explain up to 53.43% of the variability in patients' lengths of stay (LoS). Reducing the uncertainty in patients' LoS predictions helps us manage patient flow efficiently and subsequently obtain a better throughput.

摘要

医疗保健成本的飙升和服务需求的不断增长要求我们更有效地利用医疗资源。资源需求的随机性使得护理提供过程效率降低。我们的目标是降低患者资源需求的不确定性,通过将患者分类到相似的资源使用者组中来实现这一目标。在本文中,我们开发了一个两阶段分类模型,通过使用电子病历将患者分类到资源需求变化较小的用户组中。有许多统计工具可用于将患者分类到资源需求变化较小的用户组中。然而,分类回归树(CART)分析是一种更适合分析医疗保健数据的方法,因为它具有一些独特的特点。例如,它可以自然地处理预测变量之间的相互作用,本质是非参数的,并且对维度的诅咒相对不敏感。我们发现 CART 分析也可用于确定可以解释资源需求变化的患者属性。此外,我们观察到一些协变量,如主要规定程序代码、入院点和手术医生,能够解释患者住院时间(LoS)变化的高达 53.43%。降低患者 LOS 预测的不确定性有助于我们有效地管理患者流量,从而获得更好的吞吐量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验