Suppr超能文献

通过电子健康记录的紧凑表示来建模医疗质量。

Modeling Healthcare Quality via Compact Representations of Electronic Health Records.

作者信息

Stojanovic Jelena, Gligorijevic Djordje, Radosavljevic Vladan, Djuric Nemanja, Grbovic Mihajlo, Obradovic Zoran

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2017 May-Jun;14(3):545-554. doi: 10.1109/TCBB.2016.2591523. Epub 2016 Jul 14.

Abstract

Increased availability of Electronic Health Record (EHR) data provides unique opportunities for improving the quality of health services. In this study, we couple EHRs with the advanced machine learning tools to predict three important parameters of healthcare quality. More specifically, we describe how to learn low-dimensional vector representations of patient conditions and clinical procedures in an unsupervised manner, and generate feature vectors of hospitalized patients useful for predicting their length of stay, total incurred charges, and mortality rates. In order to learn vector representations, we propose to employ state-of-the-art language models specifically designed for modeling co-occurrence of diseases and applied clinical procedures. The proposed model is trained on a large-scale EHR database comprising more than 35 million hospitalizations in California over a period of nine years. We compared the proposed approach to several alternatives and evaluated their effectiveness by measuring accuracy of regression and classification models used for three predictive tasks considered in this study. Our model outperformed the baseline models on all tasks, indicating a strong potential of the proposed approach for advancing quality of the healthcare system.

摘要

电子健康记录(EHR)数据可用性的提高为改善医疗服务质量提供了独特的机会。在本研究中,我们将电子健康记录与先进的机器学习工具相结合,以预测医疗质量的三个重要参数。更具体地说,我们描述了如何以无监督的方式学习患者病情和临床程序的低维向量表示,并生成有助于预测住院患者住院时间、总费用和死亡率的特征向量。为了学习向量表示,我们建议采用专门为疾病和应用临床程序的共现建模而设计的最先进语言模型。所提出的模型在一个大规模的电子健康记录数据库上进行训练,该数据库包含加利福尼亚州九年内超过3500万次住院记录。我们将所提出的方法与几种替代方法进行了比较,并通过测量用于本研究中考虑的三个预测任务的回归和分类模型的准确性来评估它们的有效性。我们的模型在所有任务上均优于基线模型,表明所提出的方法在提高医疗系统质量方面具有强大的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验