Suppr超能文献

基于标量投影和角度的多目标优化问题进化算法。

A Scalar Projection and Angle-Based Evolutionary Algorithm for Many-Objective Optimization Problems.

出版信息

IEEE Trans Cybern. 2019 Jun;49(6):2073-2084. doi: 10.1109/TCYB.2018.2819360. Epub 2018 Apr 9.

Abstract

In decomposition-based multiobjective evolutionary algorithms, the setting of search directions (or weight vectors), and the choice of reference points (i.e., the ideal point or the nadir point) in scalarizing functions, are of great importance to the performance of the algorithms. This paper proposes a new decomposition-based many-objective optimizer by simultaneously using adaptive search directions and two reference points. For each parent, binary search directions are constructed by using its objective vector and the two reference points. Each individual is simultaneously evaluated on two fitness functions-which are motivated by scalar projections-that are deduced to be the differences between two penalty-based boundary intersection (PBI) functions, and two inverted PBI functions, respectively. Solutions with the best value on each fitness function are emphasized. Moreover, an angle-based elimination procedure is adopted to select diversified solutions for the next generation. The use of adaptive search directions aims at effectively handling problems with irregular Pareto-optimal fronts, and the philosophy of using the ideal and nadir points simultaneously is to take advantages of the complementary effects of the two points when handling problems with either concave or convex fronts. The performance of the proposed algorithm is compared with seven state-of-the-art multi-/many-objective evolutionary algorithms on 32 test problems with up to 15 objectives. It is shown by the experimental results that the proposed algorithm is flexible when handling problems with different types of Pareto-optimal fronts, obtaining promising results regarding both the quality of the returned solution set and the efficiency of the new algorithm.

摘要

在基于分解的多目标进化算法中,搜索方向(或权重向量)的设置以及标量函数中参考点(即理想点或最劣点)的选择对算法的性能至关重要。本文提出了一种新的基于分解的多目标优化器,该优化器同时使用自适应搜索方向和两个参考点。对于每个父代,通过使用其目标向量和两个参考点来构建二进制搜索方向。每个个体同时在两个基于标量投影的适应度函数上进行评估,这两个适应度函数分别是两个基于惩罚的边界交叉(PBI)函数和两个倒置 PBI 函数的差值。强调每个适应度函数上具有最佳值的解决方案。此外,采用基于角度的消除过程为下一代选择多样化的解决方案。自适应搜索方向的使用旨在有效处理不规则 Pareto 最优前沿的问题,同时使用理想点和最劣点的理念是在处理具有凹或凸前沿的问题时利用这两个点的互补效应。在 32 个多达 15 个目标的测试问题上,将所提出的算法与七种最先进的多目标/多目标进化算法进行了比较。实验结果表明,该算法在处理具有不同类型 Pareto 最优前沿的问题时具有灵活性,在返回解集的质量和新算法的效率方面都取得了有希望的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验