Suppr超能文献

通过整合基因表达与基因突变数据推断基因网络重连

Inferring Gene Network Rewiring by Combining Gene Expression and Gene Mutation Data.

作者信息

Tu Jia-Juan, Ou-Yang Le, Hu Xiaohua, Zhang Xiao-Fei

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2019 May-Jun;16(3):1042-1048. doi: 10.1109/TCBB.2018.2834529.

Abstract

Gene dependency networks often undergo changes with respect to different disease states. Understanding how these networks rewire between two different disease states is an important task in genomic research. Although many computational methods have been proposed to undertake this task via differential network analysis, most of them are designed for a predefined data type. With the development of the high throughput technologies, gene activity measurements can be collected from different aspects (e.g., mRNA expression and DNA mutation). These different data types might share some common characteristics and include certain unique properties of data type. New methods are needed to explore the similarity and difference between differential networks estimated from different data types. In this study, we develop a new differential network inference model which identifies gene network rewiring by combining gene expression and gene mutation data. Similarities and differences between different data types are learned via a group bridge penalty function. Simulation studies have demonstrated that our method consistently outperforms the competing methods. We also apply our method to identify gene network rewiring associated with ovarian cancer platinum resistance from The Cancer Genome Atlas data. There are certain differential edges common to both data types and some differential edges unique to individual data types. Hub genes in the differential networks inferred by our method play important roles in ovarian cancer drug resistance.

摘要

基因依赖网络通常会随着不同的疾病状态而发生变化。了解这些网络在两种不同疾病状态之间如何重新布线是基因组研究中的一项重要任务。尽管已经提出了许多计算方法通过差异网络分析来完成这项任务,但其中大多数是针对预定义的数据类型设计的。随着高通量技术的发展,可以从不同方面(例如,mRNA表达和DNA突变)收集基因活性测量数据。这些不同的数据类型可能具有一些共同特征,并且包含特定的数据类型独特属性。需要新的方法来探索从不同数据类型估计的差异网络之间的异同。在本研究中,我们开发了一种新的差异网络推断模型,该模型通过结合基因表达和基因突变数据来识别基因网络的重新布线。通过组桥惩罚函数来了解不同数据类型之间的异同。模拟研究表明,我们的方法始终优于竞争方法。我们还应用我们的方法从癌症基因组图谱数据中识别与卵巢癌铂耐药相关的基因网络重新布线。存在两种数据类型共有的某些差异边以及个别数据类型特有的一些差异边。我们的方法推断出的差异网络中的枢纽基因在卵巢癌耐药中起重要作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验